Рецепты. Кондитерская. Рестораны. Мясо. Фрукты и овощи

Сотни тысяч физических опытов было поставлено за тысячелетнюю историю науки. Сложно отобрать несколько «самых-самых».Среди физиков США и Западной Европы был проведен опрос. Исследователи Роберт Криз и Стони Бук просили их назвать наиболее красивые за всю историю физические эксперименты. Об опытах, вошедших в первую десятку по итогам выборочного опроса Криза и Бука, рассказал научный работник Лаборатории нейтринной астрофизики высоких энергий, кандидат физико-математических наук Игорь Сокальский.

1. Эксперимент Эратосфена Киренского

Один из самых древних известных физических экспериментов, в результате которого был измерен радиус Земли, был проведен в III веке до нашей эры библиотекарем знаменитой Александрийской библиотеки Эрастофеном Киренским. Схема эксперимента проста. В полдень, в день летнего солнцестояния, в городе Сиене (ныне Асуан) Солнце находилось в зените и предметы не отбрасывали тени. В тот же день и в то же время в городе Александрии, находившемся в 800 километрах от Сиена, Солнце отклонялось от зенита примерно на 7°. Это составляет около 1/50 полного круга (360°), откуда получается, что окружность Земли равна 40 000 километров, а радиус 6300 километров. Почти невероятным представляется то, что измеренный столь простым методом радиус Земли оказался всего на 5% меньше значения, полученного самыми точными современными методами, сообщает сайт «Химия и жизнь».

2. Эксперимент Галилео Галилея

В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это. Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту.

Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения. Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова.

Результаты, полученные Галилеем, - следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе.

3. Другой эксперимент Галилео Галилея

Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам. Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится. Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики.

4. Эксперимент Генри Кавендиша

После того как Исаак Ньютон сформулировал закон всемирного тяготения: сила притяжения между двумя телами с массами Мит, удаленных друг от друга на расстояние r, равна F=γ (mM/r2), оставалось определить значение гравитационной постоянной γ - Для этого нужно было измерить силу притяжения между двумя телами с известными массами. Сделать это не так просто, потому что сила притяжения очень мала. Мы ощущаем силу притяжения Земли. Но почувствовать притяжение даже очень большой оказавшейся поблизости горы невозможно, поскольку оно очень слабо.

Нужен был очень тонкий и чувствительный метод. Его придумал и применил в 1798 году соотечественник Ньютона Генри Кавендиш. Он использовал крутильные весы - коромысло с двумя шариками, подвешенное на очень тонком шнурке. Кавендиш измерял смещение коромысла (поворот) при приближении к шарикам весов других шаров большей массы. Для увеличения чувствительности смещение определялось по световым зайчикам, отраженным от зеркал, закрепленных на шарах коромысла. В результате этого эксперимента Кавендишу удалось довольно точно определить значение гравитационной константы и впервые вычислить массу Земли.

5. Эксперимент Жана Бернара Фуко

Французский физик Жан Бернар Леон Фуко в 1851 году экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Плоскость качания маятника сохраняет неизменное положение по отношению к звездам. Наблюдатель же, находящийся на Земле и вращающийся вместе с ней, видит, что плоскость вращения медленно поворачивается в сторону, противоположную направлению вращения Земли.

6. Эксперимент Исаака Ньютона

В 1672 году Исаак Ньютон проделал простой эксперимент, который описан во всех школьных учебниках. Затворив ставни, он проделал в них небольшое отверстие, сквозь которое проходил солнечный луч. На пути луча была поставлена призма, а за призмой - экран. На экране Ньютон наблюдал «радугу»: белый солнечный луч, пройдя через призму, превратился в несколько цветных лучей - от фиолетового до красного. Это явление называется дисперсией света.

Сэр Исаак был не первым, наблюдавшим это явление. Уже в начале нашей эры было известно, что большие монокристаллы природного происхождения обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой еще до Ньютона выполнили англичанин Хариот и чешский естествоиспытатель Марци.

Однако до Ньютона подобные наблюдения не подвергались серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. И Хариот, и Марци оставались последователями Аристотеля, который утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к белому свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный - при наименьшем. Ньютон же проделал дополнительные опыты со скрещенными призмами, когда свет, пропущенный через одну призму, проходит затем через другую. На основании совокупности проделанных опытов он сделал вывод о том, что «никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных

количество света не меняет вида цвета». Он показал, что белый свет нужно рассматривать как составной. Основными же являются цвета от фиолетового до красного.

Этот эксперимент Ньютона служит замечательным примером того, как разные люди, наблюдая одно и то же явление, интерпретируют его по-разному и только те, кто подвергает сомнению свою интерпретацию и ставит дополнительные опыты, приходят к правильным выводам.

7. Эксперимент Томаса Юнга

До начала XIX века преобладали представления о корпускулярной природе света. Свет считали состоящим из отдельных частиц - корпускул. Хотя явления дифракции и интерференции света наблюдал еще Ньютон («кольца Ньютона»), общепринятая точка зрения оставалась корпускулярной.

Рассматривая волны на поверхности воды от двух брошенных камней, можно заметить, как, накладываясь друг на друга, волны могут интерферировать, то есть взаимогасить либо взаимоусиливать друг друга. Основываясь на этом, английский физик и врач Томас Юнг проделал в 1801 году опыты с лучом света, который проходил через два отверстия в непрозрачном экране, образуя, таким образом, два независимых источника света, аналогичных двум брошенным в воду камням. В результате он наблюдал интерференционную картину, состоящую из чередующихся темных и белых полос, которая не могла бы образоваться, если бы свет состоял из корпускул. Темные полосы соответствовали зонам, где световые волны от двух щелей гасят друг друга. Светлые полосы возникали там, где световые волны взаимоусиливались. Таким образом была доказана волновая природа света.

8. Эксперимент Клауса Йонссона

Немецкий физик Клаус Йонссон провел в 1961 году эксперимент, подобный эксперименту Томаса Юнга по интерференции света. Разница состояла в том, что вместо лучей света Йонссон использовал пучки электронов. Он получил интерференционную картину, аналогичную той, что Юнг наблюдал для световых волн. Это подтвердило правильность положений квантовой механики о смешанной корпускулярно-волновой природе элементарных частиц.

9. Эксперимент Роберта Милликена

Представление о том, что электрический заряд любого тела дискретен (то есть состоит из большего или меньшего набора элементарных зарядов, которые уже не подвержены дроблению), возникло еще в начале XIX века и поддерживалось такими известными физиками, как М.Фарадей и Г.Гельмгольц. В теорию был введен термин «электрон», обозначавший некую частицу - носитель элементарного электрического заряда. Этот термин, однако, был в то время чисто формальным, поскольку ни сама частица, ни связанный с ней элементарный электрический заряд не были обнаружены экспериментально. В 1895 году К.Рентген во время экспериментов с разрядной трубкой обнаружил, что ее анод под действием летящих из катода лучей способен излучать свои, Х-лучи, или лучи Рентгена. В том же году французский физик Ж.Перрен экспериментально доказал, что катодные лучи - это поток отрицательно заряженных частиц. Но, несмотря на колоссальный экспериментальный материал, электрон оставался гипотетической частицей, поскольку не было ни одного опыта, в котором участвовали бы отдельные электроны.

Американский физик Роберт Милликен разработал метод, ставший классическим примером изящного физического эксперимента. Милликену удалось изолировать в пространстве несколько заряженных капелек воды между пластинами конденсатора. Освещая рентгеновскими лучами, можно было слегка ионизировать воздух между пластинами и изменять заряд капель. При включенном поле между пластинами капелька медленно двигалась вверх под действием электрического притяжения. При выключенном поле она опускалась под действием гравитации. Включая и выключая поле, можно было изучать каждую из взвешенных между пластинами капелек в течение 45 секунд, после чего они испарялись. К 1909 году удалось определить, что заряд любой капельки всегда был целым кратным фундаментальной величине е (заряд электрона). Это было убедительным доказательством того, что электроны представляли собой частицы с одинаковыми зарядом и массой. Заменив капельки воды капельками масла, Милликен получил возможность увеличить продолжительность наблюдений до 4,5 часа и в 1913 году, исключив один за другим возможные источники погрешностей, опубликовал первое измеренное значение заряда электрона: е = (4,774 ± 0,009)х 10-10 электростатических единиц.

10. Эксперимент Эрнста Резерфорда

К началу XX века стало понятно, что атомы состоят из отрицательно заряженных электронов и какого-то положительного заряда, благодаря которому атом остается в целом нейтральным. Однако предположений о том, как выглядит эта «положительно-отрицательная» система, было слишком много, в то время как экспериментальных данных, которые позволили бы сделать выбор в пользу той или иной модели, явно недоставало. Большинство физиков приняли модель Дж.Дж.Томсона: атом как равномерно заряженный положительный шар диаметром примерно 108 см с плавающими внутри отрицательными электронами.

В 1909 году Эрнст Резерфорд (ему помогали Ганс Гейгер и Эрнст Марсден) поставил эксперимент, чтобы понять действительную структуру атома. В этом эксперименте тяжелые положительно заряженные а-частицы, движущиеся со скоростью 20 км/с, проходили через тонкую золотую фольгу и рассеивались на атомах золота, отклоняясь от первоначального направления движения. Чтобы определить степень отклонения, Гейгер и Марсден должны были с помощью микроскопа наблюдать вспышки на пластине сцинтиллятора, возникавшие там, где в пластину попадала а-частица. За два года было сосчитано около миллиона вспышек и доказано, что примерно одна частица на 8000 в результате рассеяния изменяет направление движения более чем на 90° (то есть поворачивает назад). Такого никак не могло происходить в «рыхлом» атоме Томсона. Результаты однозначно свидетельствовали в пользу так называемой планетарной модели атома - массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см.

Современные физические эксперименты значительно сложнее экспериментов прошлого. В одних приборы размещают на площадях в десятки тысяч квадратных километров, в других заполняют объем порядка кубического километра. А третьи вообще скоро будут проводить на других планетах.

Мы предлагаем вашему вниманию 10 потрясающих фокусов-опытов, или научных шоу, которые можно сделать своими руками в домашних условиях.
На дне рождения ребенка, на выходных или на каникулах проведите время с пользой и станьте центром внимания множества глаз! 🙂

В подготовке поста нам помог опытный организатор научных шоу - профессор Николя . Он объяснил принципы, которые заложены в том или ином фокусе.

1 - Лавовая лампа

1. Наверняка многие из вас видели лампу, у которой внутри жидкость, имитирующая горячую лаву. Выглядит волшебно.

2. В подсолнечное масло наливается вода и добавляется пищевой краситель (красный или синий).

3. После этого добавляем в сосуд шипучего аспирина и наблюдаем поразительный эффект.

4. В ходе реакции подкрашенная вода поднимается и опускается по маслу, не смешиваясь с ним. А если выключить свет и включить фонарик - начнется «настоящая магия».

: «Вода и масло имеют разную плотность, к тому же обладают свойством не смешиваться, как бы мы ни трясли бутылку. Когда мы добавляем внутрь бутылки шипучие таблетки, они, растворяясь в воде, начинают выделять углекислый газ и приводят жидкость в движение».

Хотите устроить настоящее научное шоу? Больше опытов можно найти в книге .

2 - Опыт с газировкой

5. Наверняка дома или в соседнем магазине для праздника найдется несколько банок с газировкой. Прежде чем выпить их, задайте ребятам вопрос: «Что будет, если погрузить банки с газировкой в воду?»
Утонут? Будут плавать? Зависит от газировки.
Предложите детям заранее угадать, что произойдет с той или иной банкой и проведите опыт.

6. Берем банки и аккуратно опускаем в воду.

7. Оказывается, несмотря на одинаковый объем, они имеют разный вес. Именно поэтому одни банки тонут, а другие нет.

Комментарий профессора Николя : «Все наши банки имеют одинаковый объем, но вот масса у каждой банки различная, а это значит, что и плотность отличается. Что такое плотность? Это значение массы, поделенное на объем. Так как объем у всех банок одинаковый, то плотность будет выше у той из них, чья масса больше.
Будет ли банка плавать в контейнере или же утонет, зависит от отношения ее плотности к плотности воды. Если плотность банки меньше, то она будет находиться на поверхности, в противном случае банка пойдет ко дну.
Но за счет чего банка с обычной колой плотнее (тяжелее), чем банка с диетическим напитком?
Всё дело в сахаре! В отличие от обычной колы, где в качестве подсластителя используется сахарный песок, в диетическую добавляют специальный сахарозаменитель, который весит намного меньше. Так сколько же сахара в обычной банке с газировкой? Разница в массе между обычной газировкой и ее диетическим аналогом даст нам ответ!»

3 - Крышка из бумаги

Задайте присутствующим вопрос: «Что будет, если перевернуть стакан с водой?» Конечно, она выльется! А если прижать бумагу к стакану и перевернуть его? Бумага упадет и вода все равно прольется на пол? Давайте проверим.

10. Аккуратно вырезаем бумагу.

11. Кладем сверху на стакан.

12. И аккуратно переворачиваем стакан. Бумага прилипла к стакану, как намагниченная, и вода не выливается. Чудеса!

Комментарий профессора Николя : «Хоть это и не так очевидно, но на самом деле мы находимся в самом настоящем океане, только в этом океане не вода, а воздух, который давит на все предметы, в том числе и на нас с вами, просто мы уже так привыкли к этому давлению, что совсем его не замечаем. Когда мы накрываем стакан с водой листком бумаги и переворачиваем, то на лист с одной стороны давит вода, а с другой стороны (с самого низу) - воздух! Давление воздуха оказалось больше давления воды в стакане, вот листок и не падает».

4 - Мыльный вулкан

Как устроить дома извержение маленького вулкана?

14. Вам понадобится сода, уксус, немного моющей химии для посуды и картон.

16. Разводим уксус в воде, добавляем моющей жидкости и подкрашиваем все йодом.

17. Оборачиваем все темным картоном - это будет «тело» вулкана. Щепотка соды падает в стакан, и вулкан начинает извергаться.

Комментарий профессора Николя : «В результате взаимодействия уксуса с содой возникает настоящая химическая реакция с выделением углекислого газа. А жидкое мыло и краситель, взаимодействуя с углекислым газом, образуют цветную мыльную пену - вот и извержение».

5 - Насос из свечи

Может ли свечка изменить законы гравитации и поднять воду вверх?

19. Ставим свечку на блюдце и зажигаем ее.

20. Наливаем подкрашенную воду на блюдце.

21. Накрываем свечу стаканом. Через некоторое время вода втянется внутрь стакана вопреки законам гравитации.

Комментарий профессора Николя : «Что делает насос? Меняет давление: увеличивает (тогда вода или воздух начинают «убегать») или, наоборот, уменьшает (тогда газ или жидкость начинают «прибывать»). Когда мы накрыли горящую свечу стаканом, свеча потухла, воздух внутри стакана остыл, и поэтому давление уменьшилось, вот вода из миски и стала всасываться внутрь».

Игры и опыты с водой и огнем есть в книге «Эксперименты профессора Николя» .

6 - Вода в решете

Продолжаем изучать магические свойства воды и окружающих предметов. Попросите кого-то из присутствующих натянуть бинт и полейте через него воду. Как мы видим - она без всякого труда проходит через отверстия в бинте.
Поспорьте с окружающими, что сможете сделать так, что вода не будет проходить через бинт без всяких дополнительных приемов.

22. Отрежьте кусок бинта.

23. Оберните бинтом стакан или бокал для шампанского.

24. Переворачивайте бокал - вода не выливается!

Комментарий профессора Николя : «Благодаря такому свойству воды, как поверхностное натяжение, молекулы воды хотят все время находиться вместе и их не так просто разлучить (вот такие они замечательные подружки!). И если размер отверстий небольшой (как в нашем случае), то пленка не рвется даже под тяжестью воды!»

7 - Водолазный колокол

И чтобы закрепить за вами почетное звание Мага Воды и Повелителя Стихий, пообещайте, что сможете доставить бумагу на дно любого океана (или ванны или даже тазика), не замочив ее.

25. Пусть присутствующие напишут свои имена на листе бумаги.

26. Сворачиваем листок, убираем его в стакан, чтобы он упирался в его стенки и не скользил вниз. Погружаем листок в перевернутом стакане на дно резервуара.

27. Бумага остается сухой - вода не может до нее добраться! После того как вытащите листок - дайте зрителям удостовериться, что он действительно сухой.

Родители маленьких непосед могут удивить их опытами, которые можно провести в домашних условиях. Легкие, но в то же время удивительные и вызывающие восторг, они способны не только разнообразить досуг ребенка, но и позволят взглянуть на привычные вещи совсем другими глазами. И открыть для себя их свойства, функции, назначение.

Юные естествоиспытатели

Эксперименты дома, прекрасно подходящие для детей до 10 лет — лучший способ помочь ребенку накопить практический опыт, который пригодится ему в будущем.

Техника безопасности при проведении экспериментов

Для того, чтобы проведение познавательных экспериментов не было омрачено неприятностями и травмами, достаточно запомнить несколько простых, но важных правил.


Техника безопасности — на первом месте
  1. Перед тем, как начать работу с химическими веществами, рабочую поверхность нужно защитить, застелив пленкой или бумагой. Это избавит родителей от ненужной уборки и позволит сохранить внешний вид и функциональность мебели.
  2. В процессе работы не нужно слишком близко подходить к реагентам, наклоняясь над ними. Особенно если в планах – химические эксперименты для маленьких детей, в которых участвую небезопасные вещества. Мера позволит защитить слизистые рта и глаза от раздражения и ожогов.
  3. По возможности нужно использовать защитные приспособления: перчатки, очки. Они должны подходить ребенку по размеру и не мешать ему во время проведения эксперимента.

Простые эксперименты для самых маленьких

Развивающие опыты и эксперименты для самых маленьких детей (или для детей до 10 лет), как правило просты и не требуют от родителей ни особых умений, ни редкого или дорогостоящего оборудования. Зато радость открытия и чуда, которое так легко сделать своими руками, останется с ним надолго.

Например, в неописуемом восторге дети будут от самой настоящей семицветной радуги, которую они смогут вызвать сами при помощи обычного зеркала, емкости с водой и листа белой бумаги.


Опыт с радугой в бутылке

Для начала на дно небольшого таза или ванны кладется зеркало. Затем, он наполняется водой; а на зеркало направляется свет фонаря. После того, как свет отразится и пройдет через воду, он разложится на составляющие его цвета, став той самой радугой, которую можно будет увидеть на листе белой бумаги.

Еще один, очень простой и красивый опыт можно провести при помощи обычной воды, проволоки и соли.

Чтобы приступить к эксперименту, нужно приготовить перенасыщенный раствор соли. Рассчитать нужную концентрацию вещества довольно просто: при необходимом количестве соли в воде она перестает растворяться при добавлении очередной порции. Очень хорошо использовать для этой цели теплую дистиллированную воду. Для того, чтобы эксперимент прошел удачнее, готовый раствор также можно перелить в другую емкость – это удалит грязь и сделает его чище.


Опыт «Соль на проволоке»

Когда все будет готово, в раствор опускается небольшой кусочек медной проволоки с петлей на конце. Сама емкость убирается в теплое место и оставляется там на определенное время. По мере того, как раствор начнет остывать, растворимость соли понизится, и она начнет оседать на проволоке в виде красивых кристаллов. Заметить первые результаты можно будет уже через несколько дней. Кстати, использовать в эксперименте можно не только обычную, прямую проволоку: скручивая из нее причудливые фигурки, можно выращивать кристаллы самого разного размера и формы. Кстати, этот эксперимент подарит ребенку отличную идею новогодних игрушек в виде самых настоящих ледяных снежинок – достаточно просто найти гибкую проволоку и сформировать из нее красивую симметричную снежнику.

Неизгладимое впечатление на ребенка смогут произвести также и невидимые чернила. Приготовить их очень просто: достаточно просто взять чашку воды, спички, вату, половину лимона. И лист, на котором можно будет написать текст.


Невидимые чернила можно купить готовые

Для начала в чашке нужно смешать равное количество лимонного сока и воды. Затем, на зубочистку или тонкую спичку наматывается немного ваты. Получившийся «карандаш» обмакивается в смесь в полученную жидкость; затем им можно написать на листе бумаги любой текст.

Несмотря на то, что вначале слова на бумаге будут абсолютно невидимы, проявить их будет очень легко. Для этого лист с уже подсохшими чернилами нужно поднести к лампе. На разогретом листе бумаги сразу проявятся написанные слова.

Кто из детей не любит воздушные шары?

Оказывается, даже надуть обычный шар можно весьма оригинальным способом. Для этого нужно растворить в бутылке воды одну ложку пищевой соды. И в другой чашке смешиваются сок одного лимона и три столовых ложки уксуса. После, содержимое чашки вводится в бутылку (для удобства можно использовать небольшую воронку). Шарик нужно надеть на горлышко бутылки максимально быстро, пока химическая реакция не окончится. За это время углекислый газ сможет быстро надуть шарик под давлением. Для того чтобы шарик не соскочил с горлышка бутылки, его можно будет закрепить при помощи изоленты или скотча.


Опыт «Надуть шарик»

Очень интересно и необычно выглядит цветное молоко, цвета которого будут двигаться, причудливо смешиваясь между собой. Для этого эксперимента нужно налить в тарелку немного цельного молока и добавить в него несколько капель пищевого красителя. Отдельные области жидкости окрасятся в разные цвета, но при этом пятна будут оставаться неподвижными. Как же привести их в движение? Очень просто. Достаточно взять небольшую ватную палочку и, предварительно обмакнув в моющее средство, поднести к поверхности цветного молока. Вступив в реакцию с молекулами молочного жира, молекулы моющего средства заставят его двигаться.


Опыт «Рисунки на молоке»

Важно! Для этого эксперимента не подойдет обезжиренное молоко. Можно использовать только цельное!

Наверняка всем детям доводилось наблюдать дома и на улице за забавными пузырьками воздуха в минеральной или сладкой воде. Но достаточно ли они сильны для того, чтобы поднять на поверхность зерно кукурузы или изюма? Оказывается, да! Чтобы проверить это достаточно налить в бутылку любую газированную воду, а после – бросить в нее немного кукурузы или изюма. Ребенок сам убедится в том, как легко под действием пузырьков воздуха и кукуруза, и изюм начнут подниматься вверх, а после – достигнув поверхности жидкости – снова опускаться вниз.

Эксперименты для детей более старшего возраста

Детям более старшего возраста (от 10 лет) можно будет предложить уже более сложные химические эксперименты, требующие большего количества компонентов. Эти эксперименты для более старших детей немного сложнее, но дети уже могут принимать в них участие.

Для соблюдения техники безопасности дети до 10 лет должны проводить эксперименты под строгим контролем взрослых, в основном в роли зрителя. Дети старше 10 лет могут принимать в опытах более активное участие.

Примером такого эксперимента может быть создание лавовой лампы. Наверняка о таком чуде мечтают многие дети. Но, куда приятнее сделать ее своими руками, используя для этого простые компоненты, которые наверняка найдутся в каждом доме.


Опыт «Лавовая лампа»

Основой лавовой лампы станет небольшая банка или самый обычный стакан. Кроме этого для опыта понадобятся растительное масло, вода, соль и немного пищевого красителя.

Банка, или другая емкость, используемая в качестве основы лампы, наполняется водой на две трети и на треть маслом. Поскольку масло значительно легче воды по весу, она останется на ее поверхности, не смешиваясь с ней. Затем, в банку добавляется немного пищевого красителя – это придаст лавовой лампе цвет и сделает эксперимент красивее и зрелищнее. И после этого в полученную смесь кладется чайная ложка соли. Для чего? Соль заставляет масло опускаться на дно в виде пузырьков, а затем, растворяясь, выталкивает их вверх.

Следующий химический эксперимент поможет сделать увлекательным интересным такой школьный предмет, как географию.


Изготовление вулкана своими руками

Ведь изучать вулканы куда интереснее тогда, когда рядом есть не просто сухой книжный текст, но целая модель! Особенно, если сделать ее легко дома своими руками, пользуясь доступными подручными средствами: прекрасно подойдет песок, пищевой краситель, сода, уксус и бутылка.

Для начала на подносе устанавливается бутылка – она станет основой будущего вулкана. Вокруг него нужно слепить небольшой конус из песка, глины или пластилина – так гора приобретет более законченный и правдоподобный вид. Теперь нужно вызвать извержение вулкана: в бутылку заливается немного теплой воды, затем – немного соды и пищевого красителя (красного или оранжевого цвета). Завершающим штрихом станет четверть стакана уксуса. Вступив в реакцию с содой, уксус начнет активно выталкивать наружу содержимое бутылки. Этим и объясняется интересный эффект извержения, который можно наблюдать вместе с ребенком.


Вулкан можно сделать из зубной пасты

Может ли бумага гореть, не сгорая?

Оказывается, да. И эксперимент с несгораемыми деньгами легко докажет это. Для этого десятирублевая денежная купюра погружается в 50% раствор спирта (вода смешивается со спиртом в пропорции 1 к 1, к ней добавляется щепотка соли). После того, как купюра как следует пропитается, лишняя жидкость удаляется с нее, а сама купюра поджигается. Вспыхнув, она начнет гореть, но при этом совершенно не сгорит. Объяснить этот опыт довольно просто. Температура, при которой горит спирт недостаточно высока для того, чтобы испарить воду. Благодаря этому даже после того, как вещество догорит полностью, деньги останутся слегка влажными, но абсолютно целыми.


Опыты со льдом всегда пользуются успехом

Юным любителям природы можно предложить прорастить дома семена не используя при этом почву. Как это делается?

В яичную скорлупу кладется немного ваты; она активно смачивается водой, а затем в нее кладется немного семян (например, люцерны). Буквально через несколько дней можно будет заметить первые ростки. Таким образом, для прорастания семян далеко не всегда бывает нужна почва – достаточно лишь воды.

А следующий эксперимент, который легко провести дома для детей наверняка придется по душе девочкам. Ведь кто из них не любит цветы?


Окрашенный цветок можно подарить маме

Особенно самых необычных, ярких оттенков! Благодаря простому опыту прямо перед изумленными детьми простые и привычные всем цветы могут окраситься в самый неожиданный цвет. Тем более, что сделать это предельно просто: достаточно поставить срезанный цветок в воду с добавленным в нее пищевым красителем. Поднимаясь по стеблю к лепесткам, химические красители окрасят их в нужные вам цвета. Чтобы вода лучше впитывалась, срез лучше делать по диагонали – так он будет иметь максимальную площадь. Для того, чтобы цвет проявился ярче, желательно использовать светлые, или белые цветы. Еще более интересный и фантастических эффект получится если перед началом опыта стебель будет расщеплен на несколько частей и каждая из них будет погружена в свой стакан с окрашенной водой.

Лепестки окрасятся в сразу во все цвета самым неожиданным и причудливым образом. Что несомненно произведем неизгладимое впечатление на ребенка!


Опыт «Цветная пена»

Всем известно, что под действием силы тяжести вода может стекать только вниз. Но, можно ли сделать так, чтобы она поднималась вверх по салфетке? Для проведения этого опыта обычный стакан наполняется водой примерно на треть. Салфетка складывается несколько раз так, чтобы получится неширокий прямоугольник. После этого салфетка снова разворачивается; немного отступив от нижнего края на ней нужно начертить линию из цветных точек достаточно большого диаметра. Салфетка погружается в воду так, чтобы она примерно на полтора сантиметра ее окрашенная часть оказалась в ней. Соприкоснувшись с салфеткой, вода начнет постепенно подниматься вверх, окрашивая ее разноцветными полосками. Этот необычный эффект происходит благодаря тому, что имея пористую структуру, волокна салфетки легко пропускают воду вверх.


Опыт с водой и салфеткой

Для проведения следующего опыта понадобятся небольшая промокашка, формочки для печенья разной формы, немного желатин, прозрачный пакет, стакан и вода.


Желатиновая вода не смешивается

Желатин растворяется в четверти стакана воды; он должен набухнуть и увеличиться в объеме. Затем, вещество растворяется на водяной бане и доводится примерно до 50 градусов. получившуюся жидкость нужно тонким слоем распределить по целлофановому пакету. При помощи формочек для печенья из желатина вырезаются фигурки различной формы. После этого их нужно уложить на промокашку или салфетку, а после – подышать на них. Теплое дыхание заставит желатин увеличиваться в объеме, благодаря чему фигурки начнут изгибаться с одной из сторон.

Опыты, проведенные дома с детьми, очень легко разнообразить.


Желатиновые фигурки из формочек

Зимой можно попробовать несколько видоизменить эксперимент, вынеся желатиновые фигурки на балкон или оставив на некоторое время в морозильной камере. Когда под действием холода желатин застынет, на нем отчетливо проступят узоры ледяных кристаллов.

Заключение


Описание других опытов

Восторг и море положительных эмоций – вот что подарит экспериментирование для любопытных детей проведенное вместе со взрослыми. А родители позволят себе разделить с юными исследователями радость первых открытий. Ведь сколько бы лет не было человеку – возможность хотя бы ненадолго вернуться в детство по-настоящему бесценна.

Кто в детстве не верил в чудеса? Чтобы весело и познавательно провести время с малышом можно попробовать осуществить опыты из занимательной химии. Они безопасны, интересны и познавательны. Эти эксперименты позволят ответить на многие детские «почему» и пробудить интерес к науке и познанию окружающего мира. И сегодня я хочу вам рассказать вам какие опыты для детей дома можно организовать родителям.

Змея фараона


Этот опыт основан на увеличении смешиваемых реактивов в объеме. В процессе горения они трансформируются и, извиваясь, напоминают змею. Свое название эксперимент получил благодаря библейскому чуду, когда Моисей, пришедший к фараону с просьбой, превратил его жезл в змею.

Для опыта понадобятся следующие ингредиенты:

  • обычный песок;
  • этиловый спирт;
  • измельченный сахар;
  • пищевая сода.

Пропитываем песок спиртом, после этого формуем из него небольшую горку и делаем вверху углубление. После этого смешиваем маленькую ложку сахарной пудры и щепотку соды, затем засыпаем все в импровизированный «кратер». Поджигаем наш вулкан, спирт в песке начинает прогорать, и образуются черные шарики. Они представляют собой продукт разложения соды и карамелизировавшийся сахар.

После того как весь спирт выгорит, горка с песком почернеет и образуется извивающая «черная фараонова змея». Более эффектно этот опыт выглядит с применением настоящих реактивов и сильных кислот, которые можно использовать только в условиях химической лаборатории.

Можно поступить несколько проще и приобрести в аптеке таблетку глюконата кальция. Дома ее поджечь, эффект будет почти таким же, только «змея» быстро разрушится.

Волшебная лампа


В магазинах частенько можно видеть светильники, внутри которых двигается и переливается подсвечиваемая красивая жидкость. Такие лампы были изобретены в начале 60-х годов. Они работают на основе парафина и масла. Внизу устройства встроенная обычная лампа накаливания, которая подогревает опускающийся расплавленный воск. Часть его доходит до верха и опускается, другая часть нагревается и поднимается, таким образом, мы видим своеобразный «танец» парафина внутри емкости.

Для того, чтобы осуществить дома с ребенком подобный опыт нам понадобится:

  • любой сок;
  • растительное масло;
  • таблетки – шипучки;
  • красивая емкость.

Берем емкость и заполняем ее соком более чем наполовину. Сверху доливаем растительное масло и бросаем туда таблетку-шипучку. Она начинает «работать», пузырьки, поднимающиеся со дна стакана, захватывают в себе сок и образуют красивое бурление в слое масла. Затем доходящие до края стакана пузырьки лопаются, и сок опускается вниз. Получается своеобразный «круговорот» сока в стакане. Такие волшебные лампы абсолютно безвредны, в отличие от парафиновых, которые ребенок может случайно разбить и обжечься.

Шарик и апельсин: опыт для малышей


Что будет с воздушным шариком, если на него капнуть соком апельсина или лимона? Он лопнет, как только капельки цитруса его коснутся. А апельсин можно потом съесть вместе с малышом. Это очень занимательно и весело. Для опыта нам понадобится пара воздушных шариков и цитрус. Надуваем их и пусть малыш капнет на каждый соком фрукта и увидит, что получится.

Почему лопается шарик? Все дело в особенном химическом веществе – лимонене. Оно содержится в цитрусовых и часто используется в косметической промышленности. При соприкосновении сока с резиной воздушного шарика, происходит реакция, лимонен растворяет резину и шарик лопается.

Сладкое стекло

Из карамелизированного сахара можно изготовить удивительные вещи. На заре становления кинематографа в большинстве сцен драк использовалось такое съедобное сладкое стекло. Все потому, что оно менее травматично для актеров при съемках и стоит недорого. Его осколки потом можно собрать, расплавить и сделать реквизит к фильму.

Многие в детстве делали сахарные петушки или сливочную помадку, изготавливать стекло нужно по такому же принципу. Наливаем воду в кастрюлю, немного нагреваем, вода не должна быть холодной. После этого засыпаем туда сахарный песок и доводим до кипения. Когда жидкость закипит, варим до тех пор, пока масса не начнет постепенно загустевать и сильно пузырится. Расплавленный сахар в емкости должен превратиться в тягучую карамель, которая если ее опустить в холодную воду превратится в стеклышки.

Готовую жидкость вылить на предварительно подготовленный и смазанный растительным маслом противень, остудить и сладкое стекло готово.

В процессе варки в него можно добавить краситель и отлить в какую-либо интересную форму, а потом угощать и удивлять всех вокруг.

Философский гвоздь


Этот занимательный опыт основан на принципе омеднения железа. Назван по аналогии с веществом, которое могло, согласно легенде, превращать все в золото, и называлось философский камень. Для проведения опыта нам будет нужно:

  • железный гвоздь;
  • четвертая часть стакана уксусной кислоты;
  • пищевая соль;
  • сода;
  • отрезок проволоки из меди;
  • стеклянная емкость.

Берем стеклянную банку и наливаем туда кислоту, соль и хорошенько размешиваем. Будьте осторожны, уксус имеет резкий неприятный запах. Он может обжечь нежные дыхательные пути ребенка. Затем в полученный раствор кладем медную проволоку на 10-15 минут, спустя некоторое время опускаем в раствор предварительно очищенный содой железный гвоздь. Спустя некоторое время, мы можем видеть, что на нем появилось медное напыление, а проволока стала блестящей как новая. Как такое могло произойти?

Медь вступает в реакцию с уксусной кислотой, образуется медная соль, затем ионы меди на поверхности гвоздя меняются местами с ионами железа и образуют налет на его поверхности. А в растворе увеличивается концентрация солей железа.

Для проведения эксперимента не подойдут медные монеты поскольку, этот металл сам по себе очень мягкий, и чтобы деньги были прочнее, используются его сплавы с латунью и алюминием.

Изделия из меди не ржавеют со временем, они покрываются особым зеленым налетом – патиной, которая предотвращает ее от дальнейшей коррозии.

Мыльные пузыри своими руками

Кто не любил в детстве пускать мыльные пузыри? Как они красиво переливаются и весело лопаются. Можно просто купить их в магазине, но гораздо интереснее будет создать с ребенком свой раствор и затем дуть пузыри.

Сразу следует сказать, что обычная смесь из хозяйственного мыла и воды не подойдет. Из нее получаются пузыри, которые быстро исчезают и плохо выдуваются. Наиболее доступный способ для приготовления такого вещества – это два стакана воды смешать со стаканом моющего средства для посуды. Если добавить в раствор сахар – то пузыри становятся более прочными. Они будут долгое время летать и не лопнут. А огромные пузыри, которые можно видеть на сцене у профессиональных артистов, получаются при смешивании глицерина, воды и моющего средства.

Для красоты и настроения можно подмешать в раствор пищевую краску. Тогда пузыри будут красиво светиться на солнце. Вы можете создать несколько разных растворов и использовать их по очереди с ребенком. Интересно поэкспериментировать с цветом, и создать свой, новый оттенок мыльных пузырей.

Также можно попробовать смешать мыльный раствор с другими веществами и посмотреть, как они влияют на пузыри. Может быть, вы изобретете и запатентуете какой-то свой новый вид.

Шпионские чернила

Эти легендарные невидимые чернила. Из чего их изготавливают? Сейчас так много фильмов про шпионов и интересные интеллектуальные расследования. Можете предложить ребенку немного поиграть в тайных агентов.

Смысл таких чернил в том, что их нельзя увидеть на бумаге невооруженным глазом. Только применив особое воздействие, например, нагрев или химические реагенты можно увидеть тайное послание. К сожалению, большинство рецептов по их изготовлению неэффективны и такие чернила оставляют следы.

Мы изготовим особые, которые трудно увидеть без специального выявления. Для этого понадобится:

  • вода;
  • ложка;
  • пищевая сода;
  • любой источник тепла;
  • палочка с ватой на конце.

Нальем в любую емкость теплую жидкость, затем, размешивая, сыпем туда пищевую соду пока она не прекратит растворяться, т.е. смесь достигнет высокой концентрации. Опускаем туда палочку с ватой на конце и пишем ею что-нибудь на бумаге. Подождем, пока она высохнет, затем поднесем листок к зажженной свече или газовой плите. Через некоторое время можно видеть, как на бумаге проступают желтые буквы написанного слова. Следите за тем, чтобы во время проявления букв листик не загорелся.

Несгораемая денежка

Это известный и старый эксперимент. Для него вам понадобится:

  • вода;
  • спирт;
  • поваренная соль.

Возьмите глубокую стеклянную емкость и налейте туда воду, затем добавьте спирт и соль, хорошенько помешайте, чтобы все ингредиенты растворились. Для поджигания можно взять обычные листочки бумаги, если не жалко, то можно взять купюру. Только берите мелкий номинал, а то в опыте может что-то пойти не так и деньги будут испорчены.

Положите полоски бумаги или деньги в водно-солевой раствор, через некоторое время их можно вынуть из жидкости и поджечь. Можно видеть, что пламя охватывает всю купюру, но она не загорается. Этот эффект объясняется тем, что спирт, находящийся в растворе испаряется, а сама влажная бумага не загорается.

Камень исполняющий желания


Процесс выращивания кристаллов очень увлекателен, но трудоемок. Однако, то что вы получите в результате будет стоить потраченного времени. Наиболее популярно создание кристаллов из поваренной соли или сахара.

Рассмотрим выращивание «камня желаний» из рафинада. Для этого понадобится:

  • питьевая вода;
  • сахарный песок;
  • бумажный листок;
  • тонкая деревянная палочка;
  • небольшая емкость и стакан.

Сначала сделаем заготовку. Для этого нам нужно приготовить сахарную смесь. В небольшую емкость выливаем немного воды и сахара. Дождемся, пока смесь закипит, и вывариваем до образования сиропообразного состояния. Затем опускаем деревянную палочку туда и посыпаем ее сахаром, сделать это нужно равномерно, в этом случае полученный кристалл станет более красивым и ровным. Оставим основу для кристалла на ночь, чтобы она просохла и затвердела.

Займемся приготовлением раствора-сиропа. Наливаем в большую емкость воду и засыпаем, медленно помешивая, туда сахар. Затем, когда смесь закипит, варить ее до состояния тягучего сиропа. Снимаем с огня и даем остыть.

Вырезаем кружки из бумаги и крепим их к концу деревянной палочки. Она станет крышкой, на которой крепится палочка с кристаллами. Заполняем стакан раствором и опускаем туда заготовку. Выжидаем в течение недели, и «камень желаний» готов. Если положить в сироп при варке краситель, то он получится еще более красивым.

Процесс создания кристаллов из соли, несколько проще. Здесь только нужно будет следить за смесью и периодически ее менять с целью повышения концентрации.

В первую очередь создаем заготовку. Наливаем в стеклянную емкость теплой воды, и постепенно размешивая, сыпем соль, до тех пор, пока она не прекратит растворяться. Оставляем емкость на сутки. По прошествии этого времени, можно обнаружить в стакане много маленьких кристалликов, выберите наиболее крупный и привяжите его на нитку. Сделайте новый соляной раствор и положите туда кристаллик, нельзя, чтобы он касался дна или краев стакана. Это может привести к нежелательным деформациям.

Спустя пару дней можно заметить, что он подрос. Чем чаще вы будете менять смесь, повышая концентрацию содержания соли, тем быстрее сможете вырастить свой камень желаний.

Светящийся помидор


Этот эксперимент должен проходить строго под контролем взрослых, так как для его проведения используются вредные вещества. Светящийся помидор, который будет создан в процессе этого эксперимента, категорически нельзя есть, это может привести к смерти или тяжелому отравлению. Нам понадобится:

  • обычный томат;
  • шприц;
  • серное вещество от спичек;
  • отбеливатель;
  • перекись водорода.

Берем маленькую емкость, кладем туда предварительно заготовленную спичечную серу и наливаем отбеливатель. Оставляем все это ненадолго, после чего набираем смесь в шприц и вводим внутрь помидора с разных сторон, так, чтобы тот светился равномерно. Для запуска химического процесса необходима перекись водорода, которую мы вводим через след от черешка сверху. Выключаем свет в комнате, и можем наслаждаться процессом.

Яйцо в уксусе: очень простой опыт

Это простой и интересный обычная уксусная кислота. Для его осуществления будет нужно вареное куриное яйцо и уксус. Возьмите прозрачную стеклянную емкость и опустите туда яйцо в скорлупе, затем залейте ее доверху уксусной кислотой. Можно видеть, как с его поверхности поднимаются пузырьки, это происходит химическая реакция. По прошествии трех дней мы можем наблюдать, что скорлупа стала мягкой, а яйцо упругим, как мячик. Если направить на него фонарик, то можно увидеть, что оно светится. Проводить эксперимент с сырым яйцом не рекомендуется, так как возможен разрыв мягкой скорлупы при сдавливании.

Лизун своими руками из ПВА


Это довольно распространенная странная игрушка нашего детства. В настоящее время найти ее достаточно сложно. Попробуем сделать лизуна в домашних условиях. Классический его цвет – это зеленый, но вы можете использовать тот, который понравится. Попробуйте смешать несколько оттенков и создать свой уникальный цвет.

Для проведения эксперимента нам потребуется:

  • стеклянная банка;
  • несколько небольших стаканов;
  • краситель;
  • клей ПВА;
  • обычный крахмал.

Приготовим три одинаковых стакана с растворами, которые будем смешивать. В первый нальем клей ПВА, во второй воду, а в третьем разведем крахмал. Сначала выливаем в банку воду, затем добавляем клей и краситель, все тщательно размешиваем и после этого добавляем крахмал. Смесь нужно быстро перемешать, чтобы не загустела, и можете играть с готовым лизуном.

Как быстро надуть шарик

Скоро праздник и надо надуть много шариков? Что делать? Облегчить задачу поможет этот необычный опыт. Для него нам нужно резиновый шарик, уксусная кислота и обычная сода. Проводить его необходимо осторожно в присутствии взрослых.

Насыпьте щепотку соды в воздушный шарик и оденьте его на горлышко бутылки с уксусной кислотой, чтобы сода не высыпалась, распрямите шарик и пусть его содержимое упадет в уксус. Вы увидите, как будет происходить химическая реакция, он начнет пениться, выделяя углекислый газ и надувая шарик.

Вот и все на сегодня. Не забывайте, опыты для детей дома проводить лучше под присмотром, так будет и безопаснее и интереснее. До новых встреч!

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

У нас на кухне хранится много вещей, с которыми можно ставить интереснейшие эксперименты для детей. Ну и для себя, честно говоря, сделать парочку открытий из разряда «как я этого раньше не замечал».

сайт выбрал 9 экспериментов, которые порадуют детей и вызовут у них много новых вопросов.

1. Лавовая лампа

Нужны : Соль, вода, стакан растительного масла, несколько пищевых красителей, большой прозрачный стакан или стеклянная банка.

Опыт : Стакан на 2/3 наполнить водой, вылить в воду растительное масло. Масло будет плавать по поверхности. Добавьте пищевой краситель к воде и маслу. Потом медленно всыпьте 1 чайную ложку соли.

Объяснение : Масло легче воды, поэтому плавает по поверхности, но соль тяжелее масла, поэтому, когда добавляете соль в стакан, масло вместе с солью начинает опускаться на дно. Когда соль распадается, она отпускает частицы масла и те поднимаются на поверхность. Пищевой краситель поможет сделать опыт более наглядным и зрелищным.

2. Личная радуга

Нужны : Емкость, наполненная водой (ванна, тазик), фонарик, зеркало, лист белой бумаги.

Опыт : В емкость наливаем воду и кладем на дно зеркало. Направляем на зеркало свет фонарика. Отраженный свет нужно поймать на бумагу, на которой должна появиться радуга.

Объяснение : Луч света состоит из нескольких цветов; когда он проходит сквозь воду, то раскладывается на составные части - в виде радуги.

3. Вулкан

Нужны : Поднос, песок, пластиковая бутылочка, пищевой краситель, сода, уксус.

Опыт : Вокруг небольшой пластиковой бутылочки из глины или песка следует слепить небольшой вулкан - для антуража. Чтобы вызвать извержение, следует в бутылочку засыпать две столовые ложки соды, влить четверть стакана теплой воды, добавить немного пищевого красителя, а в конце влить четверть стакана уксуса.

Объяснение : Когда сода и уксус соприкасаются, начинается бурная реакция с выделением воды, соли и углекислого газа. Пузырьки газа и выталкивают содержимое наружу.

4. Выращиваем кристаллы

Нужны : Соль, вода, проволока.

Опыт : Чтобы получить кристаллы, нужно приготовить перенасыщенный раствор соли - такой, в котором при добавлении новой порции соль не растворяется. При этом нужно поддерживать раствор теплым. Чтобы процесс шел лучше, желательно, чтобы вода была дистиллированная. Когда раствор будет готов, его надо перелить в новую емкость, чтобы избавиться от мусора, который всегда есть в соли. Далее в раствор можно опустить проволочку с маленькой петелькой на конце. Поставить банку в теплое место, чтобы жидкость остывала медленнее. Через несколько дней на проволочке вырастут красивые соляные кристаллы. Если наловчиться, можно выращивать довольно крупные кристаллы или узорные поделки на скрученной проволоке.

Объяснение : С остыванием воды растворимость соли понижается, и она начинает выпадать в осадок и оседать на стенках сосуда и на вашей проволочке.

5. Танцующая монетка

Нужны : Бутылка, монета, которой можно накрыть горлышко бутылки, вода.

Опыт : Пустую незакрытую бутылку нужно положить на несколько минут в морозилку. Смочить монетку водой и накрыть ею вынутую из морозилки бутылку. Через несколько секунд монетка начнет подскакивать и, ударяясь о горлышко бутылки, издавать звуки, похожие на щелчки.

Объяснение : Монетку поднимает воздух, который в морозилке сжался и занял меньший объем, а теперь нагрелся и начал расширяться.

6. Цветное молоко

Нужны : Цельное молоко, пищевые красители, жидкое моющее средство, ватные палочки, тарелка.

Опыт : Налить молоко в тарелку, добавить несколько капель красителей. Потом надо взять ватную палочку, окунуть в моющее средство и коснуться палочкой в самый центр тарелки с молоком. Молоко начнет двигаться, а цвета - перемешиваться.

Объяснение : Моющее средство вступает в реакцию с молекулами жира в молоке и приводит их в движение. Именно поэтому для опыта не подходит обезжиренное молоко.

7. Несгораемая купюра

Нужны : Десятирублевая купюра, щипцы, спички или зажигалка, соль, 50%-ный раствор спирта (1/2 часть спирта на 1/2 часть воды).

Опыт : В спиртовой раствор добавить щепотку соли, погрузить купюру в раствор, чтобы она полностью пропиталась. Достать щипцами купюру из раствора и дать стечь лишней жидкости. Поджечь купюру и наблюдать, как она горит, не сгорая.

Объяснение : В результате горения этилового спирта образуются вода, углекислый газ и тепло (энергия). Когда вы поджигаете купюру, то горит спирт. Температура, при которой он горит, недостаточна для того, чтобы испарить воду, которой пропитана бумажная купюра. В результате весь спирт прогорает, пламя гаснет, а слегка влажная десятка остается неповрежденной.

9. Камера-обскура

Понадобится:

Фотоаппарат, поддерживающий длинную выдержку (до 30 с);

Большой лист плотного картона;

Малярный скотч (для обклеивания картона);

Комната с видом на что угодно;

Солнечный денек.

1. Заклеиваем окно картоном так, чтобы свет не поступал с улицы.

2. В центре проделываем ровное отверстие (для комнаты глубиной 3 метра отверстие должно быть около 7-8 мм).

3. Когда глаза привыкнут к темноте, на стенах комнаты обнаружится перевернутая улица! Наиболее видимый эффект получится в яркий солнечный день.

4. Теперь получившееся можно снимать на фотоаппарат на длинной выдержке. Выдержка 10-30 секунд подойдет.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Рецепты. Кондитерская. Рестораны. Мясо. Фрукты и овощи