Рецепты. Кондитерская. Рестораны. Мясо. Фрукты и овощи

Микотоксины (от греч. mukes - гриб и toxicon - яд) - это вторичные метаболиты микроскопических плесневых грибов, обладающие выраженными токсическими свойствами. Они не являются эссенциальными для роста и развития продуцирующих их микроорганизмов.

В настоящее время из кормов и продуктов питания выделено около 250 видов плесневых грибов, большинство из которых продуцирует высокотоксичные метаболиты, в том числе около 120 микотоксинов. Предполагают, что с биологической точки зрения микотоксины выполняют в обмене веществ микроскопических грибов функции, направленные на выживание и конкурентоспособность в различных экологических нишах.

С гигиенических позиций - это особо опасные токсические вещества, загрязняющие корма и пищевые продукты. Высокая опасность микотоксинов выражается в том, что они обладают токсическим эффектом в чрезвычайно малых количествах и способны весьма интенсивно диффундировать в глубь продукта.

В настоящее время еще не сформирована единая классификация и номенклатура микотоксинов. В одних случаях в основу группового деления микотоксинов положена их химическая структура, в других - характер действия, в третьих - видовая принадлежность грибов-продуцентов.

Афлатоксины. Афлатоксины представляют собой одну из наиболее опасных групп микотоксинов, обладающих сильными канцерогенными свойствами.

Структура и продуценты афлатоксинов. В настоящее время семейство афлатоксинов включает четыре основных представителя (афлатоксины В 1, В 2 , G 1 , G 2) и еще более 10 соединений, являющихся производными или метаболитами основной группы (М 1 , М 2 , В 2а, G 2a , GM 1 , P 1 , Q 1 и другие).

Продуцентами афлатоксинов являются некоторые штаммы 2 видов микроскопических грибов: Aspergillus flavus (Link.) и Aspergillus parasiticus (Speare).

Физико-химические свойства афлатоксинов. Афлатоксины обладают способностью сильно флуоресцировать при воздействии длинноволнового ультрафиолетового излучения. Афлатоксины В 1 и В 2 обладают сине-голубой флуоресценцией, G 1 и G 2 - зеленой флуоресценцией, М 1 и М 2 - сине-фиолетовой. Это свойство лежит в основе практически всех физико-химических методов их обнаружения и количественного определения.

Афлатоксины слаборастворимы в воде (10-20 мкг/мл), нерастворимы в неполярных растворителях, но легко растворяются в растворителях средней полярности, таких как хлороформ, метанол и др. В химически чистом виде они относительно нестабильны и чувствительны к действию воздуха и света, особенно к ультрафиолетовому облучению. Растворы афлатоксинов стабильны в хлороформе и бензоле в течение нескольких лет при хранении в темноте и на холоде.

Следует обратить особое внимание на то, что афлатоксины практически не разрушаются в процессе обычной кулинарной и технологической обработки загрязненных пищевых продуктов.


Факторы, влияющие на токсинообразование. Продуценты афлатоксинов - микроскопические грибы рода Aspergillus могут достаточно хорошо развиваться и образовывать токсины на различных естественных субстратах (продовольственное сырье, пищевые продукты, корма), причем не только в странах с тропическим и субтропическим климатом, как полагали ранее, но практически повсеместно, за исключением, быть может, наиболее холодных районов Северной Европы и Канады.

Оптимальной температурой для образования токсинов является температура 27-30°С, хотя синтез афлатоксинов возможен и при более низкой (12-13°С) или при более высокой (40-42°С) температуре. Например, в условиях производственного хранения зерна максимальное образование афлатоксинов происходит при температуре 35-45°С, что значительно превышает температурный оптимум, установленный в лабораторных условиях.

Другим критическим фактором, определяющим рост микроскопических грибов и синтез афлатоксинов, является влажность субстрата и атмосферного воздуха. Максимальный синтез токсинов наблюдается обычно при влажности выше 18% для субстратов, богатых крахмалом (пшеница, ячмень, рожь, овес, рис, кукуруза, сорго), и выше 9-10% - для субстратов с высоким содержанием липидов (арахис, подсолнечник, семена хлопчатника, различные виды орехов). При относительной влажности атмосферного воздуха ниже 85% синтез афлатоксинов прекращается.

Биологическое действие афлатоксинов. Действие афлатоксинов на организм животных и человека может быть охарактеризовано с двух позиций. Во-первых, с точки зрения острого токсического действия и, во-вторых, с точки зрения оценки опасности отдаленных последствий. Острое токсическое действие афлатоксинов связано с тем, что они являются одними из наиболее сильных гепатропных ядов, органом-мишенью которых является печень. Отдаленные последствия действия афлатоксинов проявляются в виде канцерогенного, мутагенного и тератогенного эффектов.

Механизм действия афлатоксинов. Афлатоксины или их активные метаболиты действуют практически на все компоненты клетки. Афлатоксины нарушают проницаемость плазматических мембран. В ядрах они связываются с ДНК, ингибируют репликацию ДНК, ингибируют активность ДНК-зависимой-РНК-полимеразы - фермента, осуществляющего синтез матричной РНК, и тем самым подавляют процесс транскрипции. В митохондриях афлатоксины вызывают повышение проницаемости мембран, блокируют синтез митохондриальных ДНК и белка, нарушают функционирование системы транспорта электронов, вызывая тем самым энергетический голод клетки. В эндоплазматическом ретикулуме под воздействием афлатоксинов наблюдаются патологические изменения: ингибируется белковый синтез, нарушается регуляция синтеза триглициридов, фосфолипидов и холестерина. Афлатоксины оказывают прямое действие на лизосомы, что приводит к повреждению их мембран и высвобождению активных гидролитических ферментов, которые, в свою очередь, расщепляют клеточные компоненты.

Все вышеперечисленные нарушения приводят к так называемому метаболистическому хаосу и гибели клетки.

Одним из важных доказательств реальной опасности афлатоксинов для здоровья человека явилось установление корреляции между частотой и уровнем загрязнения пищевых продуктов афлатоксинами и частотой первичного рака печени среди населения.

Загрязнение пищевых продуктов афлатоксинами. Как уже отмечалось, продуценты афлатоксинов встречаются повсеместно и этим объясняются значительные масштабы загрязнения кормов и пищевых продуктов и их существенная роль в создании реальной опасности для здоровья человека.

Частота обнаружения и уровень загрязнения афлатоксинами в значительной степени зависят от географических и сезонных факторов, а также от условий выращивания, уборки и хранения сельскохозяйственной продукции.

В природных условиях чаще и в наибольших количествах афлатоксины обнаруживаются в арахисе, кукурузе, семенах хлопчатника. Кроме того, в значительных количествах они могут накапливаться в различных орехах, семенах масличных культур, пшенице, ячмене, зернах какао и кофе.

В кормах, предназначенных для сельскохозяйственных животных, афлатоксины также обнаруживаются достаточно часто и в значительных количествах. Во многих странах с этим связано и обнаружение афлатоксинов в продуктах животного происхождения. Например, в молоке и тканях сельскохозяйственных животных, получавших корма, загрязненные микотоксинами, обнаружен афлатоксин М 1 . Причем афлатоксин М 1 обнаружен как в цельном, так и в сухом молоке, и даже в молочных продуктах, подвергшихся технологической обработке (пастеризация, стерилизация, приготовление творога, йогурта, сыров и т. п.).

Детоксикация загрязненных пищевых продуктов и кормов. Установление высокой токсичности и канцерогенности афлатоксинов и обнаружение их в значительных количествах в основных пищевых продуктах во всем мире привело к необходимости разработки эффективных методов детоксикации сырья, пищевых продуктов и кормов.

В настоящее время с этой целью применяют комплекс мероприятий, которые можно разделить на механические, физические и химические методы детоксикации афлатоксинов. Механические методы детоксикации связаны с отделением загрязненного сырья (материала) вручную или с помощью электронно-колориметрических сортировщиков. Физические методы основаны на достаточно жесткой термической обработке материала (например, автоклавирование), а также связаны с ультрафиолетовым облучением и озонированием. Химический метод предполагает обработку материала сильными окислителями. К сожалению, каждый из названных методов имеет свои существенные недостатки: применение механических и физических методов не дает высокого эффекта, а химические методы приводят к разрушению не только афлатоксинов, но и полезных нутриентов и, кроме этого, нарушают их всасывание.

Согласно данным ВОЗ, человек при благоприятной гигиенической ситуации потребляет с суточным рационом до 0,19 мкг афлатоксинов. В России приняты следующие санитарно-гигиенические нормативы по афлатоксинам: ПДК афлатоксина В 1 для всех пищевых продуктов, кроме молока, составляет - 5 мкг/кг, для молока и молочных продуктов - 1 мкг/кг (для афлатоксина М 1 - 0,5 мкг/кг). Допустимая суточная доза (ДСД) - 0,005-0,01 мкг/кг массы тела.

Охратоксины. Охратоксины - соединения высокой токсичности, с ярко выраженным тератогенным эффектом.

Структура и продуценты охратоксинов. Охратоксины А, В, С представляют собой группу близких по структуре соединений, являющихся изокумаринами, связанными с L-фенилаланином пептидной связью.

Продуцентами охратоксинов являются микроскопические грибы рода Aspergillus и Penicillium. Основными продуцентами являются A. ochraceus и P. viridicatum. Многочисленными исследованиями показано, что природным загрязнителем чаще всего является охратоксин А, в редких случаях охратоксин В.

Физико-химические свойства. Охратоксин А - бесцветное кристаллическое вещество, слабо растворимое в воде, умеренно растворимое в полярных органических растворителях (метанол), а также в водном растворе гидрокарбоната натрия. В химически чистом виде он нестабилен и очень чувствителен к воздействию света и воздуха, однако в растворе этанола может сохраняться без изменений в течение длительного времени. В ультрафиолетовом свете обладает зеленой флуоресценцией. Охратоксин В - кристаллическое вещество, аналог охратоксина А, не содержащий атом хлора. Он примерно в 50 раз менее токсичен, чем охратоксин А. В ультрафиолетом свете обладает голубой флуоресценцией. Охратоксин С - аморфное вещество, этиловый эфир охратоксина А, близок к нему по токсичности, но в качестве природного загрязнителя пищевых продуктов и кормов не обнаружен. В ультрафиолетовом свете обладает бледно-зеленой флуоресценцией.

Биологическое действие. Охратоксины входят в группу ми-котоксинов, преимущественно поражающих почки. При остром токсикозе, вызванном охратоксинами, патологические изменения выявляются и в печени, и в лимфоидной ткани, и в желудочно-кишечном тракте. В настоящее время уже доказано, что охратоксин А обладает сильным тератогенным действием. Вопрос о канцерогенности охратоксинов для человека остается нерешенным.

Механизм действия охратоксинов. Биохимические, молекулярные, клеточные механизмы действия охратоксинов изучены недостаточно. В исследованиях in vitro показано, что они активно связываются с различными белками: альбуминами сыворотки крови, тромбином, альдолазой, каталазой, аргиназой, карбоксипептидазой А. Некоторые моменты подтверждены и в исследованиях in vivo. Результаты изучения влияния охратоксинов на синтез макромолекул свидетельствуют о том, что охратоксин А ингибирует синтез белка и матричной РНК (токсин действует как конкурентный ингибитор), но не действует на синтез ДНК.

Основными растительными субстратами, в которых обнаруживаются охратоксины, являются зерновые культуры и среди них, в первую очередь, кукуруза, пшеница, ячмень. С сожалением приходится констатировать тот факт, что уровень загрязнения кормового зерна и комбикормов выше среднего во многих странах (Канада, Польша, Югославия, Австрия), в связи с чем охратоксин А был обнаружен в животноводческой продукции (ветчина, бекон, колбасы). С практической точки зрения весьма важно, что охратоксины являются стабильными соединениями. Так, например, при длительном прогревании пшеницы, загрязненной охратоксином А, его содержание снижалось лишь на 32% (при температуре 250-300°С).

Все вышеперечисленное не оставляет сомнения в том, что охратоксины создают реальную опасность для здоровья человека.

Трихотеценовые микотоксины. В настоящее время известно более 40 трихотеценовых микотоксинов (ТТМТ), вторичных метаболитов различных представителей микроскопических грибов рода Fusarium.

Структура и продуценты ТТМТ. В зависимости от структуры трихотеценового ядра эти микотоксины подразделяются на 4 группы: А, В, С, Д. Структура различных типов трихотеценовых микотоксинонов очень сложна и имеет свои характерные особенности.

В качестве природных загрязнителей пищевых продуктов и кормов к настоящему времени выявлены только четыре: Т-2 токсин и диацеток-сискирпенол, относящиеся к типу А, а также ниваленол и дезоксинива-ленол, относящиеся к типу В.

Продуцентами ТТМТ типа А и В, обладающих высокой токсичностью, являются многие грибы рода Fusarium. Микроскопические грибы этого рода являются возбудителями так называемых гнилей корней, стеблей, листьев, семян, плодов, клубней и сеянцев сельскохозяйственных растений. Таким образом, поражаются корма и пищевые продукты, и как следствие наблюдается возникновение алиментарных токсикозов у животных и человека.

Физико-химические свойства. ТТМТ - это бесцветные кристаллические, химически стабильные соединения, плохо растворимые в воде. ТТМТ типа А растворимы в умеренно полярных растворителях (ацетон), типа В - в более полярных растворителях (этанол, метанол и др.). Эти токсины, за исключением некоторых, не обладают флюоресценцией. В связи с этим, для их обнаружения, после разделения методом тонкослойной хроматографии, используют различные способы (например, нагревание до 100- 150°С после обработки спиртовым раствором серной кислоты) с целью получения окрашенных или флуоресцирующих производных.

Биологическое действие ТТМТ. Алиментарные токсикозы, вызванные потреблением в пищу пищевых продуктов и кормов, пораженных микроскопическими грибами, продуцирующими ТТМТ, можно отнести к наиболее распространенным микотоксикозам человека и сельскохозяйственных животных. Первые сведения о такого рода заболеваниях появились более ста лет тому назад.

Хорошо известен токсикоз «пьяного хлеба» - заболевание человека и животных, причиной которого послужило употребление зерновых продуктов (главным образом хлеба), приготовленных из зерна, пораженного грибами Fusarium graminearum (F. roseum). Кроме того, описан целый ряд тяжелых токсикозов, таких как акабаби-токсикоз (вызывается красной плесенью и связан с поражением зерна грибами F. nivale и F. graminearum); алиментарная токсическая алейкия - АТА (токсикоз, связанный с употреблением в пищу продуктов из зерновых культур, перезимовавших в поле под снегом и пораженных микроскопическими грибами F. sporotri-chiella) и многие другие, приводящие к серьезному нарушению здоровья людей и протекающие по типу эпидемий, т. е. характеризующиеся определенной очаговостью, сезонностью, неравномерностью вспышек в разные годы и употреблением продуктов из зерна, пораженного микроскопическими грибами.

Механизм действия ТТМТ. Многочисленными исследованиями in vitro и in vivo было показано, что ТТМТ являются ингибиторами синтеза белков и нуклеиновых кислот, кроме этого, вызывают нарушения стабильности лизосомных мембран и активацию ферментов лизосом, что в конечном счете приводит к гибели клетки.

Загрязнение пищевых продуктов. Как отмечалось выше, в качестве природных загрязнителей пищевых продуктов и кормов обнаружены лишь четыре из более чем четырех десятков трихотеценовых микотоксинов. Чаще всего они обнаруживаются в зерне кукурузы, пшеницы и ячменя. Микотоксины этой группы отличаются повсеместным распространением, причем в большей степени это касается многих стран Европы, Северной Америки, в меньшей - Индии, Японии, Южной Америки. Необходимо отметить, что часто в одном и том же продукте обнаруживают два или более микотоксинов.

Зеараленон и его производные. Зеараленон и его производные также продуцируются микроскопическими грибами рода Fusarium. Он впервые был выделен из заплесневелой кукурузы.

Структура и продуценты зеараленона. По своей структуре зеараленон является лактоном резорциловой кислоты. Основными продуцентами зеараленона являются Fusarium graminearum и F. roseum.

Физико-химические свойства. Зеараленон - белое кристаллическое вещество, плохо растворимое в воде, но хорошо растворимое в этаноле, ацетоне, метаноле, бензоле. Имеет три максимума поглощения в ультрафиолете (236 нм, 274 нм, 316 нм) и обладает сине-зеленой флуоресценцией.

Биологическое действие. Зеараленон обладает выраженными гормоноподобными (экстрогенными) свойствами, что отличает его от других микотоксинов. Кроме этого, в опытах на различных лабораторных животных было доказано тератогенное действие зеараленона, хотя он и не обладает острым (летальным) токсическим эффектом даже при введении его животным в очень больших дозах. Сведения о влиянии зеараленона на организм человека отсутствуют, но, учитывая его высокую экстрогенную активность, нельзя полностью исключить негативное воздействие зеараленона на организм человека.

Загрязнение пищевых продуктов. Основным природным субстратом, в котором наиболее часто обнаруживается зеараленон, является кукуруза. Поражение кукурузы микроскопическими грибами рода Fusarium - продуцентами зеараленона - происходит как в поле, на корню, так и при ее хранении. Высока частота обнаружения зеараленона в комбикормах, а также в пшенице и ячмене, овсе. Среди пищевых продуктов этот токсин был обнаружен в кукурузной муке, хлопьях и кукурузном пиве.

С практической точки зрения интересными представляются данные по влиянию переработки зерна кукурузы на степень загрязнения зеараленоном. В крупке и муке грубого помола, без удаления отрубей, в муке, полученной при сухом помоле кукурузы, содержание зеараленона составляло примерно 20% от его количества в цельном зерне. При влажном помоле загрязненной кукурузы токсин концентрировался во фракции клейковины, где его концентрация была выше, чем в отрубях и зародыше; во фракции крахмала токсин не выявлялся.

Тепловая обработка в нейтральной или кислой среде не разрушает зеараленон, но в щелочной среде при 100°С за 60 мин разрушается около 50% токсина. К разрушению зеараленона приводит и обработка загрязненной кукурузы 0,03% раствором персульфата аммония или 0,01% раствором пероксида водорода.

Патулин и некоторые другие микотоксины . Микотоксины, продуцируемые микроскопическими грибами рода Penicillium, распространены повсеместно и представляют реальную опасность для здоровья человека. Патулин особо опасный микотоксин, обладающий канцерогенными и мутагенными свойствами.

Структура и продуценты патулина. По своей химической структуре патулин представляет 4-гидроксифуропиран. Основными продуцентами патулина являются микроскопические грибы Penicillium patulum и Penicillium expansu. Но и другие виды этого рода микроскопических грибов, а также Byssochlamys fulva и В. nivea способны синтезировать патулин. Максимальное токсинообразование отмечается при температуре 21-30°С.

Биологическое действие. Биологическое действие патулина проявляется как в виде острых токсикозов, так и в виде ярко выраженных канцерогенных и мутагенных эффектов. Биохимические механизмы действия патулина изучены недостаточно. Предполагают, что патулин блокирует синтез ДНК, РНК и белков, причем блокирование инициации транскрипции осуществляется за счет ингибирования ДНК-зависимой-РНК-полимеразы. Кроме этого, микотоксин активно взаимодействует с SH-группами белков и подавляет активность тиоловых ферментов.

Загрязнение пищевых продуктов. Продуценты патулина поражают в основном фрукты и некоторые овощи, вызывая их гниение. Патулин обнаружен в яблоках, грушах, абрикосах, персиках, вишне, винограде, бананах, клубнике, голубике, бруснике, облепихе, айве, томатах. Наиболее часто патулином поражаются яблоки, где содержание токсина может доходить до 17,5 мг/кг. Интересно, что патулин концентрируется в основном в подгнившей части яблока, в отличие от томатов, где он распределяется равномерно по всей ткани.

Патулин в высоких концентрациях обнаруживается и в продуктах переработки фруктов и овощей: соках, компотах, пюре и джемах. Особенно часто его находят в яблочном соке (0,02-0,4 мг/л). Содержание патулина в других видах соков: грушевом, айвовом, виноградном, сливовом, манго - колеблется от 0,005 до 4,5 мг/л. Интересным представляется тот факт, что цитрусовые и некоторые овощные культуры, такие как картофель, лук, редис, редька, баклажаны, цветная капуста, тыква и хрен обладают естественной устойчивостью к заражению грибами-продуцентами патулина.

Среди микотоксинов, продуцируемых микроскопическими грибами рода Penicillium и представляющих серьезную опасность для здоровья человека, необходимо выделить лютеоскирин, циклохлоротин, цитреовиридин и цитринин.

Лютеоскирин (продуцент Penicillium islandicum) - желтое кристаллическое вещество, выделен из долго хранившегося риса, а также пшеницы, сои, арахиса, бобовых и некоторых видов перца. Механизм токсического действия связан с ингибированием ферментов дыхательной цепи (печени, почках, миокарде), а также в подавлении процессов окислительного фосфорилирования.

Циклохлоротин (продуцент Penicillium islandicum) - белое кристаллическое вещество, циклический пептид, содержащий хлор. Биохимические механизмы токсического действия направлены на нарушение углеводного и белкового обмена и связаны с ингибированием целого ряда ферментов. Кроме этого, токсическое действие циклохлоротина проявляется в нарушении регуляции проницаемости биологических мембран и процессов окислительного фосфорилирования.

Цитреовиридин (продуцент Penicillium citreo-viride) - желтое кристаллическое вещество, выделен из пожелтевшего риса. Обладает нейро-токсическими свойствами.

Цитринин (продуцент Penicillium citrinum) - кристаллическое вещество желтого цвета, выделен из пожелтевшего риса. Цитринин часто обнаруживается в различных зерновых культурах: пшенице, ячмене, овсе, ржи, а также в кукурузе и арахисе. Кроме этого, незначительные количества цитринина были найдены в хлебобулочных изделиях, мясных продуктах и фруктах. Обладает выраженными нефротоксически-ми свойствами.

Методы определения микотоксинов и контроль за загрязнением пищевых продуктов

Методы определения микотоксинов. Современные методы обнаружения и определения содержания микотоксинов в пищевых продуктах и кормах включают скрининг-методы, количественные аналитические и биологические методы.

Скрининг-методы отличаются быстротой и удобны для проведения серийных анализов, позволяют быстро и надежно разделять загрязненные и незагрязненные образцы. К ним относятся такие широко распространенные методы, как миниколоночный метод определения афлатоксинов, охратоксина А и зеараленона; методы тонкослойной хроматографии (ТСХ-методы) для одновременного определения до 30 различных микотоксинов, флуоресцентный метод определения зерна, загрязненного афлатоксинами, и некоторые другие.

Количественные аналитические методы определения микотоксинов представлены химическими, радиоиммунологи-ческими и иммуноферментными методами. Химические методы являются в настоящее время наиболее распространенными и состоят из двух стадий: стадии выделения и стадии количественного определения микотоксинов. Стадия выделения включает экстракцию (отделение микотоксина от субстрата) и очистку (отделение микотоксина от соединений с близкими физико-химическими характеристиками). Окончательное разделение микотоксинов проводится с помощью различных хроматографических методов, таких как газовая (ГХ) и газожидкостная хроматография (ГЖХ), тонкослойная хроматография (ТСХ), высокоэффективная жидкостная хроматография (ВЭЖХ) и масс-спектрометрия. Количественную оценку содержания микотоксинов проводят путем сравнения интенсивности флуоресценции при ТСХ в ультрафиолетовой области спектра со стандартами. Для подтверждения достоверности полученных результатов применяют различные тесты, основанные на получении производных микотоксинов с иными хроматографииче-скими, колориметрическими или флюорометрическими характеристиками.

Высокочувствительные и высокоспецифичные радиоиммуно-химические и иммуноферментные методы обнаружения, идентификации и количественного определения микотоксинов находят все более широкое применение и пользуются повышенным вниманием со стороны исследователей. Эти методы основаны на получении антисывороток к конъюгатам микотоксинов с бычьим сывороточным альбумином. Основным преимуществом этих методов является их исключительная чувствительность.

Биологические методы обычно не отличаются высокой специфичностью и чувствительностью и применяются, главным образом, в тех случаях, когда отсутствуют химические методы выявления микотоксинов или в дополнение к ним в качестве подтверждающих тестов. В качестве тест-объектов используют различные микроорганизмы, куриные эмбрионы, различные лабораторные животные, культуры клеток и тканей.

Контроль за загрязнением микотоксинами . В настоящее время вопросы контроля за загрязнением продовольственного сырья, пищевых продуктов и кормов микотоксинами решаются не только в рамках отдельных государств, но и на международном уровне, под эгидой ВОЗ и ФАО.

В системе организации контроля за загрязнением продовольственного сырья и пищевых продуктов можно выделить два уровня: инспектирование и мониторинг, которые включают регулярные количественные анализы продовольственного сырья и пищевых продуктов.

Мониторинг позволяет установить уровень загрязнения, оценить степень реальной нагрузки и опасности, выявить пищевые продукты, являющиеся наиболее благоприятным субстратом для микроскопических грибов - продуцентов микотоксинов, а также подтвердить эффективность проводимых мероприятий по снижению загрязнения микотоксинами. Особое значение имеет контроль за загрязнением микотоксинами при характеристике качества сырья и продуктов, импортируемых из других стран.

С целью профилактики алиментарных токсикозов основное внимание следует уделять зерновым культурам. В связи с этим необходимо соблюдать следующие меры по предупреждению загрязнения зерновых культур и зернопродуктов.

1. Своевременная уборка урожая с полей, его правильная агротехническая обработка и хранение.

2. Санитарно-гигиеническая обработка помещений и емкостей для хранения.

3. Закладка на хранение только кондиционного сырья.

4. Определение степени загрязнения сырья и готовых продуктов.

5. Выбор способа технологической обработки в зависимости от вида и степени загрязнения сырья.

Основные пути загрязнения продовольственного сырья и пищевых продуктов токсичными штаммами микромицетов приведены на рис. 11.7.

Детоксикация загрязненных пищевых продуктов.

В настоящее время с целью детоксикации сырья, пищевых продуктов и кормов применяют комплекс мероприятий, которые можно разделить на механические, физические и химические методы детоксикации афлатоксинов. Механические методы детоксикации связаны с отделением загрязненного сырья(материалы) вручную или с помощью электронно-колориметрических сортировщиков. Физические методы основаны на достаточно жесткой термической обработке материала (автоклавирование), ультрафиолетовым облучением и озонированием. Химический метод предполагает обработку материала сильными окислителями. К сожалению каждый из перечисленных методов имеет свои недостатки: применение механических и физических методов не дает высокого эффекта, а химические методы проводят к разрушению не только афлатоксинов, но и полезных нутриентов.

Согласно данным ВОЗ, человек при благоприятной гигиенической ситуации потребляет с суточным рационом до 0, 19 мкг афлатоксинов. В России приняты следующие санитарно- гигиенические нормативы по афлатоксинам: ПДК афлатоксина В 1 для всех пищевых продуктов, кроме молока, составляет – 5 мкг/кг, для молока и молочных продуктов- 1 мкг/кг (для афлатоксина М 1 - 0,5 мкг/кг). Допустимая суточная доза (ДСД)- 0,005- 0,01 мкг/кг масса тела.

Патулин и некоторые другие микотоксины. Микотоксины, продуцируемые микроскопическими грибами рода Penicillium, распространены повсеместно и представляют реальную опасность для здоровья человека. Патулин особо опасный микотоксин, обладающий канцерогенными и мутагенными свойствами.

По своей химической структуре Патулин представляет 4-гидроксифуропиран.

Основными продуктами патулина являются микроскопические грибы Penicillium patulum и Penicillium expansu. Но и другие виды этого рода микроскопических грибов, а также Byssochlamys Fulva и Bnivea способны синтезировать Патулин. Максимальное токсинообразование отличается при температуре 21-30 о С.

Биологическое действие патулина проявляется как в виде острых токсинов, так и в виде ярко выраженных канцерогенных и мутагенных эффектов. Биохимические механизмы действия патулина изучены недостаточно. Предполагают, что Патулин блокирует синтез ДНК, РНК и белков, причём блокирование инициации транскрипции осуществляется за счет ингибирования ДНК- зависимой- РНК- полимеразы. Кроме того, микотоксин активно взаимодействует с SH-группами белков и подавляют активность тиоловых ферментов.

Продуценты патулина поражают в основном фрукты и некоторые овощи, вызывая их гниение. Патулин обнаружен в яблоках, грушах, абрикосах, персиках, вишне, винограде, бананах, клубнике, чернике, голубике, бруснике, облепихе, айве, томатах. Наиболее часто патулином поражаются яблоки, где содержание токсина может доходить до 17,5 мг/кг.. Интересно, что патулин концентрируется в основном в подгнившей части яблока, в отличии от томатов, где он распределяется равномерно по всей ткани.

Патулин в высоких концентрациях обнаруживается и в продуктах переработки фруктов и овощей: соках, компотах, пюре и джемах. Особенно часто его находят в яблочном соке (0,02-0,4 мг/л). Содержание патулина в других видах соков: грушевом, айвовом, виноградном, сливовом, манго- колеблется от 0,005 до 4,5 мг/л. Интересным представляется то, что Цитрусовые и некоторые овощные культуры, также как картофель, лук, редис, редька, баклажаны, цветная капуста, тыква и хрен обладают естественной устойчивостью к заражению грибами-продуцентами патулина.

Среди микотоксинов, продуцируемых микроскопическими грибами рода Penicillium и представляющих серьезную опасность для здоровья человека необходимо выделить лютеоскирин, циклохлоротин, цитреовиридин, цитринин.

Лютеоскирин (продукт Penicillium islandicum) – желтое кристаллическое вещество, выделен из долго хранившегося риса, а также пшеницы, сои, арахиса, бобовых и некоторых видов перца. Механизм токсического действия связан с ингибированием ферментов дыхательной цепи (печени, почках, миокарде), а также в подавлении процессов окислительного фосфорилирования.

Циклохлоротин (продукт Penicillium islandicum) – белое кристаллическое вещество, циклический пептид, содержащий хлор. Биохимические механизмы токсического действия направлены на нарушение углеводородного и белкового обмена и связаны с ингибированием целого ряда ферментов. Кроме того, токсическое действие циклохлоротина проявляется в нарушении регуляции проницаемости биологических мембран и процессов окислительного фосфорилирования.

  1. Курс лекций по Хозяйственному праву

    Реферат >> Государство и право
  2. Курс лекций по истории (2)

    Реферат >> История

    Писал в «Лекциях по русской истории» С. Ф. ... продовольственные карточки, отмененные по окончании Гражданской войны. Дефицит про­дуктов питания ... безопасности , его пост был передан В. М. Молотову. Произошло изменение курса ... экономия сырья и материалов...

  3. Курс лекций по Коммерческой логистике

    Лекция >> Логика

    2003 год Курс лекций по дисциплине «Коммерческая... которые занимались распределением продуктов питания . В первом... сырья и полуфабрикатов; хранение продукции и сырья ... продовольственного рынка... очередь, по экономичности, безопасности , техническому состоя­нию...

  4. Курс лекций по Экономике (2)

    Реферат >> Экономика

    ... по охране труда, организация докладов, лекций по технике безопасности ... валюты по курсу Центрального... 10% по основным продуктам питания до 90% по алкогольной... рынке продовольственных товаров - новые виды продуктов ... технологический процесс сырьем , материалами, ...

  5. Курс лекций по Экономике отрасли

    Реферат >> Экономика

    Источникам сырья , а сельскохозяйственных предприятий – к местам потребления продукции; 7. укрепление экономической и продовольственной безопасности ; 8. ... расширения производства, удовлетворения потребностей в продуктах питания и др. Под производительностью...

ЛЕКЦИЯ 9

Цель : Сформулировать понятие микотоксинов. Рассмотреть некоторых представителей группы микотоксинов. Изучить методы определения микотоксинов. Рассмотреть микробиологический контроль безопасности пищевых продуктов.

Микротоксины (от греч. mykes – гриб и toxikon – яд) это вторичные метаболиты микроскопических плесневых грибов, обладающие выраженными токсическими свойствами. Высокая опасность микотоксинов выражается в том, что они обладают токсическим эффектом в чрезвычайно малых количествах и способны весьма интенсивно диффундировать в глубь продукта.

Афлатоксины являются представителями наиболее опасной группы микотоксинов, обладающих сильными гепатотоксическими и канцерогенными свойствами. Продуцентами афлатоксинов являются различные штаммы только двух видов аспергилл (Aspergi11us flavus и Aspergi11us parasiticus), которые широко распространены во всем мире. Следует отметить, что токсигенные грибы могут поражать растительные субстраты не только во время хранения, но и в процессе их роста, сбора урожая, транспортирования и переработки.

Семейство афлатоксинов включает четыре основных представителя (афлатоксины В 1 , В 2 , G 1 , G 2), а также более 10 соединений, являющихся производными или метаболитами основной группы (М 1 , М 2 , В 2а, G 2a , GM 1 , Р 1 , Q 1 и др.).

В природных условиях чаще и в наибольших количествах афлатоксины обнаруживаются в арахисе, кукурузе, семенах хлопчатника. Кроме того, в значительных количествах они могут накапливаться в различных орехах, семенах масличных культур, пшенице, ячмене, зернах какао и кофе, а также в кормах для сельскохозяйственных животных.

Следует отметить возможность появления афлатоксинов в продуктах животного происхождения: в молоке, тканях и органах животных, получавших корм, загрязненный афлатоксинами в высоких концентрациях.

Доказано, что коровы экскретируют с молоком от 0,35 до 2-3 % полученного с кормом афлатоксина В 1 в виде высокотоксичного метаболита - афлатоксина М 1. При этом пастеризация молока и процесс высушивания не оказывают существенного влияния на содержание в нем афлатоксина М 1. Афлатоксин М 1 был обнаружен как в цельном, так и в сухом молоке и даже в молочных продуктах, подвергшихся технологической обработке (пастеризация, стерилизация, приготовление творога, йогурта, сыров и т. п.). Так, в процессе получения сыра, из контаминированного молока 50 % афлатоксина М 1 определяется в творожной массе. При получении масла 10 % афлатоксина М 1 переходит в сливки, 75 % остается в снятом молоке.

Афлатоксины слабо растворимы в воде, нерастворимы в неполярных растворителях, но легко растворимы в растворителях средней полярности, таких как хлороформ, метанол и диметилсульфоксид. Они достаточно не стабильны; в химически чистом виде и чувствительны к воздействию воздуха и света. Афлатоксины практически не разрушаются при обычной кулинарной обработке контаминированных пищевых продуктов.


Трихотеценовые микотоксины являются вторичными метаболитами микроскопических, грибов рода Fusarium, которые поражают корма и пищевые продукты, вследствие чего у животных и человека возникает алиментарный токсикоз. Чаще, всего они обнаруживаются в зерне кукурузы, пшеницы и ячменя. Микотоксины этой группы отличаются повсеместным распространением, особенно в странах с умеренным континентальным климатом. Нередко в одном и том же продукте обнаруживают два или более микотоксинов. При проведении обязательной сертификации предусмотрен контроль за содержанием двух представителей этой группы, а именно нормируются дезоксиниваленоли Т-2 токсин.

Дезоксиниваленол (ДОН) - один из распространенных фузариотоксинов - подавляет синтез белка, снижает концентрацию иммуноглобулинов в сыворотке крови, может подавлять репродуктивную систему. Особенно опасным является загрязнение кормов для сельскохозяйственных животных. Так, ДОН вызывает у животных рвоту, снижает потребление корма у поросят. Т-2 токсин распространен менее широко, но более токсичен, чем ДОН. Т-2 токсин вызывает раздражение, кровоизлияния и некроз в пищеварительном тракте. Острая интоксикация трихотеценами сопровождается поражением органов кроветворения и иммунокомпетентных органов. Характерны развитие геморрагического синдрома, отказ от корма, рвота.

Зеараленон и его производные также продуцируются микроскопическими грибами рода Fusarium. Основным природным субстратом, в котором наиболее, часто обнаруживается зеараленон, является кукуруза. Грибы рода Fusarium graminеаrum часто поражают кукурузу в поле на корню и являются причиной гнили початков и стеблей. Контаминация кукурузы зеараленоном может происходить и при хранении. Высока частота обнаружения зеараленона в комбикормах, а также в пшенице, ячмене и овсе. Среди пищевых продуктов этот токсин был обнаружен в кукурузной муке, хлопьях и кукурузном пиве.

Зеараленон обладает выраженным эстрогенным и тератогенным действием и представляет серьезную проблему для животноводства во многих странах, а способность этого микотоксина накапливаться в тканях сельскохозяйственных животных делает его потенциально опасным для здоровья человека. Загрязнение кормов зеараленоном вызывает снижение плодовитости, аборты, бесплодие и воспалительные заболевания у свиней, коров, домашней птицы и кроликов. Несмотря на это, некоторые производные зеараленона до последнего времени использовались в качестве стимуляторов роста животных и достаточно широко производились промышленностью.

Патулин - особо опасный микотоксин, обладающий канцерогенными и мутагенными свойствами. Основными продуцентами патулина являются микроскопические грибы Penicillium patulum и Penicillium ехраnsum. Продуценты патулина поражают в основном фрукты и некоторые овощи, вызывая их гниение. Патулин обнаружен в яблоках, грушах, абрикосах, персиках, вишне, винограде, бананах, патулин,клубнике, голубике, бруснике, облепихе, айве, томатах. Наиболее часто патулином поражаются яблоки, где содержание токсина может доходить до 17,5 мг/кг. Следует отметить, что патулин обнаруживают не только в подгнившей части фруктов и овощей, но и в нормальной. Например, в томатах патулин распределяется равномерно по всей ткани.

Патулин в высоких концентрациях обнаруживается и в продуктах переработки фруктов и овощей: соках, компотах, пюре и джемах. Особенно часто его находят в яблочном соке (0,02-0,4 мг/л). Содержание патулина в других видах соков: грушевом, айвовом, виноградном, сливовом, манго - колеблется от 0,005 до 4,5 мг/л.

Контроль за содержанием микотоксинов является обязательным при проведении сертификации продовольственного сырья и пищевых продуктов. В России приняты санитарно-гигиенические нормативы по содержанию микотоксинов в продуктах питания, приведенные в табл. 1.

Таблица 1

Допустимые уровни содержания микотоксинов в отдельных группах пищевых продуктов

ТЕМА: ЗАГРЯЗНЕНИЕ ПРОДОВОЛЬСТВЕННОГО СЫРЬЯ И ПИЩЕВЫХ ПРОДУКТОВ МИКОТОКСИНАМИ

Наименование параметра Значение
Тема статьи: ТЕМА: ЗАГРЯЗНЕНИЕ ПРОДОВОЛЬСТВЕННОГО СЫРЬЯ И ПИЩЕВЫХ ПРОДУКТОВ МИКОТОКСИНАМИ
Рубрика (тематическая категория) Радио

ЛЕКЦИЯ 9

Цель : Сформулировать понятие микотоксинов. Рассмотреть некоторых представителœей группы микотоксинов. Изучить методы определœения микотоксинов. Рассмотреть микробиологический контроль безопасности пищевых продуктов.

Микротоксины (от греч. mykes – гриб и toxikon – яд) это вторичные метаболиты микроскопических плесневых грибов, обладающие выраженными токсическими свойствами. Высокая опасность микотоксинов выражается в том, что они обладают токсическим эффектом в чрезвычайно малых количествах и способны весьма интенсивно диффундировать в глубь продукта.

Афлатоксины являются представителями наиболее опасной группы микотоксинов, обладающих сильными гепатотоксическими и канцерогенными свойствами. Продуцентами афлатоксинов являются различные штаммы только двух видов аспергилл (Aspergi11us flavus и Aspergi11us parasiticus), которые широко распространены во всœем мире. Следует отметить, что токсигенные грибы могут поражать растительные субстраты не только во время хранения, но и в процессе их роста͵ сбора урожая, транспортирования и переработки.

Семейство афлатоксинов включает четыре базовых представителя (афлатоксины В 1 , В 2 , G 1 , G 2), а также более 10 соединœений, являющихся производными или метаболитами основной группы (М 1 , М 2 , В 2а, G 2a , GM 1 , Р 1 , Q 1 и др.).

В природных условиях чаще и в наибольших количествах афлатоксины обнаруживаются в арахисе, кукурузе, семенах хлопчатника. Вместе с тем, в значительных количествах они могут накапливаться в различных орехах, семенах масличных культур, пшенице, ячмене, зернах какао и кофе, а также в кормах для сельскохозяйственных животных.

Следует отметить возможность появления афлатоксинов в продуктах животного происхождения: в молоке, тканях и органах животных, получавших корм, загрязненный афлатоксинами в высоких концентрациях.

Доказано, что коровы экскретируют с молоком от 0,35 до 2-3 % полученного с кормом афлатоксина В 1 в виде высокотоксичного метаболита - афлатоксина М 1. При этом пастеризация молока и процесс высушивания не оказывают существенного влияния на содержание в нем афлатоксина М 1. Афлатоксин М 1 был обнаружен как в цельном, так и в сухом молоке и даже в молочных продуктах, подвергшихся технологической обработке (пастеризация, стерилизация, приготовление творога, йогурта͵ сыров и т. п.). Так, в процессе получения сыра, из контаминированного молока 50 % афлатоксина М 1 определяется в творожной массе. При получении масла 10 % афлатоксина М 1 переходит в сливки, 75 % остается в снятом молоке.

Афлатоксины слабо растворимы в воде, нерастворимы в неполярных растворителях, но легко растворимы в растворителях средней полярности, таких как хлороформ, метанол и диметилсульфоксид. Οʜᴎ достаточно не стабильны; в химически чистом виде и чувствительны к воздействию воздуха и света. Афлатоксины практически не разрушаются при обычной кулинарной обработке контаминированных пищевых продуктов.

Трихотеценовые микотоксины являются вторичными метаболитами микроскопических, грибов рода Fusarium, которые поражают корма и пищевые продукты, вследствие чего у животных и человека возникает алиментарный токсикоз. Чаще, всœего они обнаруживаются в зерне кукурузы, пшеницы и ячменя. Микотоксины этой группы отличаются повсœеместным распространением, особенно в странах с умеренным континœентальным климатом. Нередко в одном и том же продукте обнаруживают два или более микотоксинов. При проведении обязательной сертификации предусмотрен контроль за содержанием двух представителœей этой группы, а именно нормируются дезоксиниваленоли Т-2 токсин.

Дезоксиниваленол (ДОН) - один из распространенных фузариотоксинов - подавляет синтез белка, снижает концентрацию иммуноглобулинов в сыворотке крови, может подавлять репродуктивную систему. Особенно опасным является загрязнение кормов для сельскохозяйственных животных. Так, ДОН вызывает у животных рвоту, снижает потребление корма у поросят. Т-2 токсин распространен менее широко, но более токсичен, чем ДОН. Т-2 токсин вызывает раздражение, кровоизлияния и некроз в пищеварительном тракте. Острая интоксикация трихотеценами сопровождается поражением органов кроветворения и иммунокомпетентных органов. Характерны развитие геморрагического синдрома, отказ от корма, рвота.

Зеараленон и его производные также продуцируются микроскопическими грибами рода Fusarium. Основным природным субстратом, в котором наиболее, часто обнаруживается зеараленон, является кукуруза. Грибы рода Fusarium graminеаrum часто поражают кукурузу в поле на корню и являются причиной гнили початков и стеблей. Контаминация кукурузы зеараленоном может происходить и при хранении. Высока частота обнаружения зеараленона в комбикормах, а также в пшенице, ячмене и овсœе. Среди пищевых продуктов данный токсин был обнаружен в кукурузной муке, хлопьях и кукурузном пиве.

Зеараленон обладает выраженным эстрогенным и тератогенным действием и представляет серьезную проблему для животноводства во многих странах, а способность этого микотоксина накапливаться в тканях сельскохозяйственных животных делает его потенциально опасным для здоровья человека. Загрязнение кормов зеараленоном вызывает снижение плодовитости, аборты, бесплодие и воспалительные заболевания у свинœей, коров, домашней птицы и кроликов. Несмотря на это, некоторые производные зеараленона до последнего времени использовались в качестве стимуляторов роста животных и достаточно широко производились промышленностью.

Патулин - особо опасный микотоксин, обладающий канцерогенными и мутагенными свойствами. Основными продуцентами патулина являются микроскопические грибы Penicillium patulum и Penicillium ехраnsum. Продуценты патулина поражают в основном фрукты и некоторые овощи, вызывая их гниение. Патулин обнаружен в яблоках, грушах, абрикосах, персиках, вишне, винограде, бананах, патулин,клубнике, голубике, бруснике, облепихе, айве, томатах. Наиболее часто патулином поражаются яблоки, где содержание токсина может доходить до 17,5 мг/кᴦ. Следует отметить, что патулин обнаруживают не только в подгнившей части фруктов и овощей, но и в нормальной. К примеру, в томатах патулин распределяется равномерно по всœей ткани.

Патулин в высоких концентрациях обнаруживается и в продуктах переработки фруктов и овощей: соках, компотах, пюре и джемах. Особенно часто его находят в яблочном соке (0,02-0,4 мг/л). Содержание патулина в других видах соков: грушевом, айвовом, виноградном, сливовом, манго - колеблется от 0,005 до 4,5 мг/л.

Контроль за содержанием микотоксинов является обязательным при проведении сертификации продовольственного сырья и пищевых продуктов. В России приняты санитарно-гигиенические нормативы по содержанию микотоксинов в продуктах питания, приведенные в табл. 1.

Таблица 1

Допустимые уровни содержания микотоксинов в отдельных группах пищевых продуктов

Группа продуктов Микотоксины Максимально допустимый уровень, мг/кг
Мясо и мясные продукты, яйца и яйцепродукты Афлатоксин В 1 0,005
Молоко и молочные продукты Микотоксин В 1 Афлатоксин В, (сырье для детских и диетических продуктов) Афлатоксин М 1 Не допускается Не более 0,001 Не более 0,0005
Хлебобулочные и мукомольно-крупяные изделия Афлатоксины Зеараленон Т-2 токсин (дополнительно к зерновым, крупам, муке) Дезоксиниваленол(дополнительно к зерновым, крупам, муке, хлебобулочным изделиям) Дезоксиниваленол (пшеница твердых и сильных сортов) 0,005 1,0 0,1 0,5 1,0
Кондитерские изделия: сахаристые, конфеты и подобные изделия, какао, какао-порошок, шоколад, кофе Афлатоксин В 1 Зеараленон (дополнительно к орехам) Для печенья регламентируются по сырью 0,005 1,0
Плодово-овощная продукция: свежие и свежемороженные овощи и картофель, фрукты и виноград, ягоды Патулин Афлатоксин В 1 (дополнительно для чая, овощных, фруктовых соков и пюре) 0,05 0,005
Жировые продукты: масло растительное, маргарин, масло коровье Афлатоксин В 1 Зеараленон Микотоксин В 1 Афлатоксин В 1 (сырье для детских и диетических продуктов) Афлатоксин М 1 0,005 1,0 Не допускается Не более 0,001 0,0005
Напитки и продукты брожения (пиво, вино, водка и другие спиртные напитки) Микотоксины регламентируются в сырье
Другие продукты: изоляты и концентраты белка афлатоксин В 1 зеараленон 0,005 1,0
казеин афлатоксин В 1 (сырье для детских и диетических продуктов) Не более 0,001
отруби пшеничные афлатоксин М 1 афлатоксин В 1 зеараленон Т-2 токсин дезоксиниваленон 0,0005 0,005 1,0 0,1 1,0

Система мер профилактики микотоксикозов включает санитарно-микологический анализ пищевых продуктов (рис. 1).


Вместе с тем, большое внимание уделяется изысканию способов деконтаминации и детоксикации сырья и пищевых продуктов, загрязненных микотоксинами. С этой целью используют механические, физические и химические методы: 1) механические - отделœение загрязненного материала вручную или с помощью электронно-калориметрических сортировщиков; 2) физические - термическая обработка, облучение ультрафиолетовой радиацией; 3) химические - обработка растворами окислителœей, сильных кислот и оснований.

При этом применение механических и физических методов очистки не дает высокого эффекта͵ химические методы приводят к разрушению не только микотоксинов, но и полезных нутриентов, а также к нарушению их всасывания.

ТЕМА: ЗАГРЯЗНЕНИЕ ПРОДОВОЛЬСТВЕННОГО СЫРЬЯ И ПИЩЕВЫХ ПРОДУКТОВ МИКОТОКСИНАМИ - понятие и виды. Классификация и особенности категории "ТЕМА: ЗАГРЯЗНЕНИЕ ПРОДОВОЛЬСТВЕННОГО СЫРЬЯ И ПИЩЕВЫХ ПРОДУКТОВ МИКОТОКСИНАМИ" 2017, 2018.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Рецепты. Кондитерская. Рестораны. Мясо. Фрукты и овощи