Рецепты. Кондитерская. Рестораны. Мясо. Фрукты и овощи

ИСКУССТВЕННЫЕ ПРОДУКТЫ ПИТАНИЯ (искусственная пища), пищевые продукты, производимые техническим путём из природных пищевых ингредиентов; последние получают в основном из побочных продуктов переработки растительных материалов. В качестве сырья для производства искусственных продуктов питания чаще всего используют препараты соевого белка (концентраты и изоляты), а также концентраты молочной сыворотки. Концентраты соевого белка получают путём удаления водно-спиртовой экстракцией нежелательных компонентов соевой муки (побочного продукта производства соевого масла), изоляты - щелочной экстракцией обезжиренной соевой муки с последующим осаждением белка кислотой. В результате концентрация белка повышается с 40-55% (по массе) до 70-72% и 90-95% соответственно. Концентраты молочной сыворотки получают методом ультрафильтрации. В состав искусственных продуктов питания включают также пищевые добавки: загустители, гелеобразователи и другие пищевые гидроколлоиды, ароматизаторы, красители и прочие компоненты, позволяющие придать продукту требуемые технологические и потребительские свойства. Для повышения пищевой ценности добавляют витамины, антиоксиданты, пре- и пробиотики, пищевые волокна и другие ингредиенты. Основные технологические операции, используемые при изготовлении искусственных продуктов питания - термопластическая экструзия, эмульгирование, гелеобразование.

В США исследования в области производства искусственных продуктов питания проводятся начиная с 1950-х годов; основные задачи - расширение сферы применения и повышение рыночной стоимости обезжиренной соевой муки. В СССР подобные работы начаты в 1960-х годах по инициативе академика А. Н. Несмеянова с целью создания принципиально новых промышленных технологий производства пищи, в том числе позволяющих сократить пищевую цепь. Частичная замена в рационе мясных продуктов растительными и использование для питания человека белков зелёной биомассы, планктона, биомассы микроорганизмов и т. п. приводят к значительному экономическому эффекту и позволяют резко увеличить продовольственные ресурсы, поскольку сокращение пищевой цепи на одно звено обусловливает уменьшение расхода пищевых веществ и энергии примерно в 10 раз. Другая важная задача - получение продуктов с заданными составом и свойствами, в том числе для профилактики хронических заболеваний (так называемых функциональных продуктов питания), для диетического и лечебного питания.

Различают два вида искусственных продуктов питания - комбинированные продукты и аналоги. Первые представляют собой натуральные продукты, содержащие искусственно полученные ингредиенты. Наиболее распространены рубленые мясные изделия, которые содержат не менее 20-25% (по массе) текстурата соевого белка, получаемого термопластической экструзией обезжиренной соевой муки, соевых белковых концентратов или их смесей с изолятами. Аналоги имитируют натуральные пищевые продукты (например, белковая зернистая икра - аналог икры осетровых). Наиболее распространены аналоги молочных и мясных продуктов. Первые, в частности, предназначены для людей с аллергией к коровьему молоку (например, в США ею страдает около 10% детей). В качестве аналогов используют как традиционное соевое молоко, так и эмульсии, в том числе сухие, на основе изолята соевого белка.

Лит.: Толстогузов В. Б. Искусственные продукты питания. М., 1978; он же. Экономика новых форм производства пищевых продуктов. М., 1986; он же. Новые формы белковой пищи. М., 1987; Мессина М., Мессина В., Сетчелл К. Обыкновенная соя и ваше здоровье. Майкоп, 1995; Растительный белок: новые перспективы / Под редакцией Е. Е. Браудо. М., 2000; Лищенко В. Ф. Мировая продовольственная проблема: белковые ресурсы (1960-2005 годы). М., 2006.

Не успело человечество отведать настоящей космической еды в тюбиках - мечту каждого ребенка, желающего стать космонавтом, как ученые шокировали новым известием: скоро на Земле не останется ни одного вегетарианца. Благодаря новейшим разработкам великих умов, скоро нам не придется убивать животных ради куска мяса, мир избавится от голода. Пока искусственное мясо растет в пробирках, можно попробовать которая продается во многих магазинах. Историю разработок человека - еды в тюбиках и мяса, выращенного в пробирке, мы расскажем в сегодняшней статье.

Эволюция тюбика

Сегодня ассоциируется именно с тюбиком, и многие малыши, выдавливая на щетку зубную пасту, представляют себя покорителями безграничного пространства, окружающего все планеты. Именно в тюбиках можно купить борщ или второе блюдо, чтобы вечером для семьи устроить тематический космический ужин, но настоящие космонавты уже практически позабыли об алюминиевых тюбиках, и теперь питаются едой, упакованной в вакуумную "посуду", жестяные банки.

Первые тюбики для хранения еды изобрели в Эстонии, где с 1964 года любая хозяйка могла приобрести ягодное желе в такой упаковке, а семейство с большим удобством наносило лакомство на булку. Оказалось, что стандарты изготовленных тюбиков Прибалтийским химкомбинатом полностью соответствовали не только стандартам данной страны, но и космическим. Именно поэтому Эстония стала крупнейшим подрядчиком, выпускающим упаковку для еды покорителей космоса.

Слишком узкое горлышко тюбика не позволяло космонавтам комфортно питаться, так как куски еды попросту в нем застревали, и в 1970 году Тираспольский завод смог "подогнать" горлышко к более удобному размеру, расширив его на 2 миллиметра, чего оказалось вполне достаточно, чтобы космическая еда могла стать более похожей на домашнюю, с кусками мяса и овощей.

В 1982 году ученые вновь немного видоизменили упаковку для космической еды. стали помещаться в специальные пакеты, куда перед употреблением заливалась горячая вода, чтобы пища стала теплой.

Почему в космосе нельзя питаться гамбургерами?

Первыми людьми, пытавшимися питаться в космосе иначе, чем представители других стран, стали космонавты из США. Изначально рацион был представлен высушенными продуктами, которые перед употреблением заливались водой. Такое питание не всех устраивало, и покорители космоса тайком проносили на корабль нормальную пищу. Так многим запомнился казус, произошедший с астронавтом Джоном Янгом, пронесшим на борт настоящий сэндвич. В условиях невесомости съесть данное блюдо оказалось невозможным, булочка разлетелась мелкими крошками по всему кораблю, и на протяжении всего дальнейшего полета жизнь экипажа превратилась в настоящий кошмар.

К восьмидесятым годам еда в тюбиках стала единственным вариантом для полноценного питания космонавтов, и в своем меню имела более трехсот наименований блюд. Сегодня оно не так обширно, количество предлагаемых яств сократилось практически в два раза.

Чем сегодня питаются российские космонавты?

В наше время еда в тюбиках почти полностью утратила свою актуальность. Блюда запаковываются в специальные вакуумные упаковки, и пища перед фасовкой проходит сублимированную сушку. В таком виде проще сохранить все необходимые организму микроэлементы и витамины, вкус свежеприготовленной еды, ее первоначальный вид, и такие продукты хранятся при любой температуре до пяти лет. В рационе российских покорителей космоса присутствуют борщ, грибной суп, солянка, рис с тушеными овощами, греческий салат и салат из зеленой фасоли, говяжий язык, мясо птицы, говядина и свинина, антрекоты, омлет с куриной печенью, хлеб, не способный крошиться, творог, и многие другие блюда. Кстати, творог сумели только российские ученые адаптировать к долгому пребыванию в космосе, и этим продуктом наши космонавты с удовольствием делятся со своими иностранными коллегами.

Стоит отметить, что государству суточное питание одного космонавта обходится в 20 тысяч рублей. Эта цена не зависит от продуктов и техники упаковки, дороговизну питания оправдывает доставка продуктов на борт, которая стоит 7 тысяч долларов за килограмм груза.

Питание американских космонавтов

В отличие от российских космонавтов, на борту у которых отсутствуют микроволновые печи и могут похвалиться наличием такой необходимой техники. Благодаря этому рацион их питания более разнообразен. Они могут позволить себе полуфабрикаты. В остальном же блюда схожи, так же, как и россияне, американские коллеги употребляют в пищу сублимированные продукты. Спецификой питания космонавтов из США является большое количество цитрусовых, в то время когда наши ребята предпочитают виноград и яблоки.

Прочие страны

Японцы и в космосе не могут обойтись без традиционных суши, разнообразных сортов зеленого чая, супа с лапшой и соевого соуса.

Китайские астронавты питаются более приближенной к привычной нам пищей. Основу рациона их составляет рис, свинина и курица.

Самыми экзотическими блюдами могут похвалиться французы. Они постоянно имеют на борту грибы трюфели, сыр. Был случай, когда французскому космонавту отказали в проносе на корабль сыра с плесенью. Ученые испугались, что данный грибок может повлиять на всю биологическую обстановку на орбитальной станции.

Будущее космоса за искусственным мясом

Мясо из пробирки, собственноручно выращенные овощи и фрукты в огороде на космическом корабле - это будущее изучения космического пространства. Ученые уже много лет трудятся над созданием корабля, способного перенести космонавтов на Марс, проделав долгий путь длиной в несколько лет.

Но корабль не является единственной проблемой, ученые также трудятся над созданием настоящего огорода, где космонавты смогут выращивать овощи. На протяжении нескольких лет идут испытания по выращиванию искусственного мяса, которое астронавты также смогут самостоятельно растить, чтобы питание было полноценным. Именно этот продукт станет будущим не только космической индустрии, но и всего человечества.

Мясо без мяса

Ученые научились создавать искусственное мясо, и эта новость порадовала большинство людей. Мы по своей натуре хищники, и организму для нормальной работы просто необходимо мясо, содержащиеся в нем вещества. Многие люди стали вегетарианцами по причине огромной любви к животным, некоторые из-за болезни, не позволяющей питаться такой едой, а кто-то просто не может себе позволить ежедневно питаться мясными блюдами, так как бюджет невелик.

Все эти проблемы уже решаются, и в скором времени каждый житель планеты будет мясоедом, ведь при производстве продукта ни одно животное не пострадает, он будет практически безвредным, так как при выращивании мяса в пробирке учитываются абсолютно все моменты.

Кому это надо?

Некоторые спросят: "Для чего все эти хлопоты? Выращивали на протяжении всей истории настоящих хрюкающих, мычащих и кудахтающих, почему бы не продолжить?". Все дело в том, что человечество разрастается с неимоверной скоростью, мяса всем просто в скором времени не хватит, а в некоторых странах люди уже по-настоящему голодают, так как этот продукт - слишком дорогое удовольствие.

Помимо борьбы с голодом отпадет проблема содержать скотобойни, которые мешают нормально спать по ночам защитникам животных. Ни одно милое создание больше не отдаст своей жизни, чтобы накормить человека.

Кроме животных, выращивание искусственного мяса сохранит многие гектары земли, которые пойдут на строительство жилья для людей, а не ферм. Также нам удастся сохранить экологию, которая глобальным потеплением намекает на то, что пора бы сократить поступление вредных веществ в атмосферу. Искусственное мясо потребляет на 40% меньше энергии, на 98% меньше земли необходимо для его выращивания, на 95% будет меньше выделяемого парникового газа и метана, которые ведут к глобальному потеплению, в разы сократится потребление чистой воды.

Выращиваемое искусственное мясо к 2050 году станет доступно каждому человеку, оно будет в разы дешевле, чем настоящее, и его количество удовлетворит потребность в еде всего человечества.

История пробирочного мяса

Уинстон Черчилль говорил, что однажды мы будем выращивать одного цыпленка, чтобы питаться ежедневно только грудками, а сама же птица останется жива, отдав единожды несколько клеток, которые будут расти в отдельной среде. Пророчество великого президента начало сбываться в 2000 году, когда ученые предоставили результат своего эксперимента, вырастив небольшой кусочек мяса из клеток, взятых у золотой рыбки.

В 2001 году НАСА стало размышлять над потребностью космонавтов в долгосрочном и самовозобновляемом источнике пищи, и начались опыты по выращиванию мяса индюка.

В 2009 году ученые из Нидерландов заявили, что им удалось вырастить кусочек свинины. Они предоставили результат своей работы на обсуждение всего научного мира, и тем самым смогли найти множество спонсоров, готовых вкладывать средства в развитие данной индустрии.

Гамбургер с искусственным мясом

Кусочек свинины, выращенный учеными, стал первым успехом в области выращивания мяса в пробирке. Было решено работать дальше в заданном направлении, и финансирование не заставило себя долго ждать. Состоятельные спонсоры со всего мира стали вкладывать средства в разработку, а сами решили остаться в тени, не разглашая своих имен.

Ученый Марк Пост взялся за выращивание говядины, и пообещал, что в 2012 году предоставит кусок, которого хватит для приготовления одного гамбургера. Только сразу же предупредил о том, что цена этого куска будет заоблачной, а вкусовые качества не смогут соответствовать настоящему мясу, но это ведь только начало!

Искусственное мясо из стволовых клеток коровы смогло вырасти до веса 140 грамм к 2013 году, и из него, как и было обещано, приготовили долгожданный гамбургер. Только блюдо не стали выставлять на аукцион, а бесплатно скормили диетологу Ханни Рутцеру, чтобы получить профессиональную оценку готового первого искусственного мяса, пригодного в пищу.

Дегустация проходила в Лондоне, и "подопытный" диетолог вынес свой вердикт: слишком сухое, совершенно лишенное жира мясо, но вполне пригодное в пищу.

Ученые пообещали, что при условиях продолжения финансирования смогут вырастить сочный, большой кусок мяса в более короткие сроки. Они сказали, что смогли выяснить причину сухости, и знают, как исправить ситуацию в лучшую сторону. При положительной динамике на прилавках магазинов уже через 20 лет появится доступное по цене и хорошее по качеству искусственное мясо.

Как выращивают мясо в пробирке?

Производство искусственного мяса является довольно сложным процессом. У животного берутся стволовые клетки и помещаются в специальную емкость, где им предстоит расти. Клеткам постоянно необходим кислород, который в живом существе поставляется кровеносными сосудами. Здесь же сосуды заменены биореакторами, в которых образуется губка-матрица (в ней растет мясо, обогащается кислородом, выводит отходы).

Имеется две разновидности мяса искусственного: несвязанные мышечные ткани, полноценные мышцы. Над вторым вариантом работают усиленно ученые. Процесс сложный, так как нужно правильное формирование волокон, а для этого мышце необходимо ежедневно тренироваться! Именно поэтому рост пока слишком долгий.

Сложности

Первоначально культивируемое мясо будет дорогим, и не каждая компания решится заняться его внедрением в ряды привычных людям продуктов.

Также может возникнуть проблема с доверием человека к такому продукту. Появится множество вопросов о том, как генные модификации повлияют на здоровье организма. Не каждый человек сможет съесть искусственное мясо, так как побоится за свое состояние, хоть ученые и обещают, что оно будет более безопасным, чем настоящее.

Понадобится довольно много времени, чтобы люди привыкли к новшеству, поэтому данная индустрия будет развиваться медленней, чем предполагается.

Фермеры уже сейчас начинают волноваться за свое благосостояние, так как боятся, что "живое мясо" перестанет пользоваться спросом, и они останутся без работы.

Однако какими бы ни были пессимистичными предсказания, искусственное мясо - наше будущее, и будущее всей планеты. Будем с нетерпением ждать, когда можно будет отведать котлету, для изготовления которой не потребовалось убивать животное!

Дата публикации или обновления 14.08.2017

С древнейших времен занимает человека проблема питания. Голод всегда был частым гостем жителей нашей планеты. И сейчас проблема питания еще не нашла полного разрешения. Организация Объединенных Наций, Всемирная Организация Здравоохранения, Международная Продовольственная Организация при ООН (ФАО) отмечают, что в настоящее время 60-80 процентов населения земного шара (в основном в развивающихся странах) страдает от недостатка пищи. В докладе ФАО «Состояние производства продуктов питания и сельского хозяйства в 1966 г.» указывалось, что при ежегодном увеличении населения мира на 70 миллионов человек не отмечалось одновременного роста производства продуктов питания. Напротив, во всех развивающихся странах, за исключением Ближнего Востока, оно снизилось в общем объеме на 2 процента, а на душу населения - на 4 - 5 процентов.

Положение обостряется еще и тем, что в последние два столетия прирост населения на планете достиг невиданных доселе размеров, обретя, по определению ООН и ВОЗ, характер «демографического взрыва».

По одной из оценок ООН, в 2000 году на земле будут жить 7,4 миллиарда человек: 1,4 миллиарда в промышленно развитых странах и 6 - во всех остальных. Это означает: в 2000 году на долю индустриальных районов придется всего 19-20 процентов населения планеты в сравнении с 36 процентами в 1900 году и 33 - в 1930-м. В 1970 году эта доля уменьшилась до 27 процентов.

Уже сейчас жители стран южноамериканского континента, Африки и Азии обеспечены животным белком крайне недостаточно - каждый житель в среднем получает соответственно 26,9 и 2 грамма белка (при норме 50 граммов). Но, чтобы сохранить хотя бы сегодняшний уровень питания к 2000 году, все мировые запасы продовольствия необходимо увеличить в 4-7 раз, а продуктов животного происхождения - в 9 раз.

Между тем расчеты показывают: получить такое количество продуктов естественным путем к началу будущего столетия станет практически невозможно. Анализируя международные статистические данные по перспективам производства основных продуктов питания, можно сказать, что при самых благоприятных условиях мировая продукция зерна к 1985 году превысит современный уровень едва ли на одну треть. Ненамного увеличится и производство молочных продуктов, а продукция мяса, яиц, семян масличных, добыча рыбы возрастут всего лишь вдвое. Такой прирост производства продуктов питания не сможет, очевидно, радикально обеспечить белком население развивающихся стран. Тем более, что оно составит в будущем не менее 4/6 всего населения планеты.

Академик АМН СССР А. Покровский и многие зарубежные ученые относят обеспечение будущих поколений полноценными продуктами питания к числу наиболее важных стратегических проблем развития производительных сил человеческого общества, к одной из актуальнейших социальных и экономических проблем современности. Она отражена также и в списке основных направлений развития науки, включающем 10 пунктов, которые исследователи будущего должны рассматривать в первую очередь. Задача поиска эффективных путей увеличения производства продуктов питания занимает 3 место, уступая лишь вопросам усовершенствования образования и методов воспитания подрастающего поколения и проблеме сохранения мира.

Сейчас она привлекла уже к себе внимание не только отдельных ученых, но и многих международных организаций, которые комплексными усилиями пытаются решить эту важную задачу. Специалисты ФАО, к примеру, составили так называемый Индикативный план развития мирового сельского хозяйства. Этот план позволяет надеяться на решение хотя бы энергетического дефицита в питании людей. Намного сложнее преодолеть дефицит белка, мировой недостаток которого на сегодняшний день составляет около 40-60 миллионов тонн.

Научные центры многих стран мира включились в активный поиск новых, необычных источников белка, которые позволили бы быстро получать дешевый, биологически полноценный белок, по своим свойствам не отличающийся от белков животного происхождения. Такой источник, например, - различные непромысловые рыбы, содержащие высокоценный животный белок. Но этот путь ограничен «потолком» ее вылова - он не может превышать 200 миллионов тонн в год, или - в пересчете на белок - 30 миллионов тонн дополнительного белка. Кроме того, уже сейчас в некоторых районах Мирового океана наблюдается «перевылов», если так можно выразиться, определенных сортов рыбы, что может привести к их полному исчезновению.

Эффективным источником белка могут служить также водоросли. Но в их белке отсутствуют важнейшие незаменимые аминокислоты, которые не могут синтезироваться в организме и поступают только с животными белками. Это сильно снижает его биологическую ценность. К тому же для водорослей необходимо организовать специальные «парниковые» водоемы, что также связано со значительными материальными затратами. Открытые же водоемы целиком зависят от погоды. Все это ограничивает широкое производство водорослей для пищевых целей.

Наибольшую популярность как источники белка приобрели семена масличных культур - сои, семян подсолнечника, арахиса и других, которые содержат до 30 процентов высококачественного белка. По содержанию некоторых незаменимых аминокислот он приближается к белку рыбы и куриных яиц и перекрывает белок пшеницы. Белок из сои широко уже используется в США , Англии и других странах как ценный пищевой материал.

Увеличить количество пищевого белка можно и за счет микробиологического синтеза, который в последние годы привлекает к себе особое внимание. Микроорганизмы чрезвычайно богаты белком - он составляет 70-80 процентов их веса. Кроме того, в виде побочных продуктов они дают различные трудносинтезируемые обычными химическими методами биологически активные гормоны, антибиотики, витамины и другие вещества. Не менее важен вопрос, во многом определяющий рентабельность нового массового производства белка, - скорость его синтеза.

Микроорганизмы примерно в 10-100 тысяч раз быстрее синтезируют белок, чем животные.

Здесь уместно привести классический пример: 400-килограммовая корова производит в день 400 граммов белка, а 400 килограммов бактерий - 40 тысяч тонн. Естественно, на получение 1 кг белка микробиологическим синтезом при соответствующей промышленной технологии потребуется средств меньше, чем на получение 1 кг белка животного. Да к тому же технологический процесс куда менее трудоемок, чем сельскохозяйственное производство, не говоря уже об исключении сезонных влияний погоды - заморозков, дождей, суховеев, засух, освещенности, солнечной радиации и т. д.

Микроорганизмы постоянно присутствуют в кишечнике человека и продуктах питания, и организм активно их использует.

Почему бы не предположить возможность полной адаптации человеческого организма к такому белку. Экспериментальные исследования отечественных и зарубежных ученых, а также наши собственные подтверждают эту идею. Правда, эксперименты еще чрезвычайно немногочисленны, носят поисковый характер и потому не дают пока оснований к практической реализации их результатов.

Наиболее перспективные микроорганизмы - дрожжи. Тысячелетиями использует их человек как пищевую добавку. Широко применялись они в питании армий в первую и вторую мировые войны. Это лишний раз подтверждает правильность мысли. Одна из причин, сдерживавших культивирование дрожжей в питании населения,- дороговизна их производства. Эту немаловажную причину ликвидировала открытая известным немецким ученым Феликсом Юстом в 1952 году возможность выращивания дрожжей на углеводородах парафинового ряда. Белок из таких дрожжей получается достаточно дешевым. Используя для роста микроорганизмов всего лишь 2 процента мировой добычи нефти, можно полностью покрыть белковый дефицит - дать такое количество белка, которым целый год можно кормить 2 миллиарда человек.

Сейчас уже известно, что микроорганизмы можно выращивать на самой разнообразной питательной среде: на газах, парафинах, нефти, отходах угольной, химической, пищевой, винно-водочной, деревообрабатывающей промышленности. Экономические преимущества их использования очевидны. Так, килограмм переработанной микроорганизмами нефти дает килограмм белка, а, скажем, килограмм сахара-- всего 500 граммов белка. Аминокислотный состав белка дрожжей практически не отличается от такового, полученного из микроорганизмов, выращенных на обычных углеводных средах, а важнейшей незаменимой аминокислоты триптофана, дефицитной в большинстве продуктов питания, у «газовых» (выращенных на метане) дрожжей далее вдвое больше, чем в белках яйца, молока, рыбы и мяса. А ведь именно аминокислоты, эти первичные кирпичики, из которых строится любой белок в живой природе, и определяют биологическую ценность белка для животного организма.

Биологические испытания препаратов из дрожжей, выращенных на углеводородах, которые проведены и у нас в стране и за рубежом, выявили полное отсутствие у них какого-либо вредного влияния на организм испытуемых животных. Опыты были проведены на многих поколениях десятков тысяч лабораторных и сельскохозяйственных животных.

Оказалось, однако, что животные возвращают иам в виде мяса лишь 10-20 процентов потребленного ими белка. Остальная же часть безвозвратно теряется. Усвоение белков человеком может достигать 98 процентов. Поэтому было начато изучение возможности использования дрожжевого белка непосредственно в питании людей. Но с позиции нутрициолога (специалиста в области питания) цельные дрожжи - всего лишь полуфабрикат, требующий дальнейшей переработки. Не исключено, что они могут содержать вредные для здоровья остаточные количества питательной среды, а также и другие, пока еще не выделенные вещества, действие которых на организм может оказаться неблагоприятным. Кроме того, в непереработанном виде дрожжи содержат неспецифические липиды и аминокислоты, биогенные амины, полисахариды и нуклеиновые кислоты, а их влияние иа организм пока еще плохо изучено.

Поэтому и предлагается выделять из дрожжей белок в химически чистом виде. Освобождение его от нуклеиновых кислот также уже стало несложным. Во многих странах ведутся подобные исследования. В Институте элементоорганических соединений АН СССР под руководством академика А. Несмеянова и профессора С. Рогожина разработана уже оригинальная технология получения изолированного из дрожжей белка. Препарат обладает высокой пищевой ценностью, что подтверждено рядом специальных исследований, а главное - он полностью освобожден от примесей, о которых мы говорили.

На кафедре гигиены питания 1-го Московского ордена Ленина и ордена Трудового Красного Знамени медицинского института имени И. М. Сеченова под руководством профессора К. Петровского и доктора медицинских наук А. Игнатьева автор статьи начал в 1972 году исследования белковой ценности этого препарата. И вот было показано, что по химическому составу и сбалансированности аминокислот, перевариваемости в желудочно-кишечном тракте он мало отличается от лучших белков животного происхождения.

А после включения в него дефицитной аминокислоты метионина он приблизился по ценности к молочному белку. Добавление небольших количеств препарата к малопитательным продуктам (сухому картофелю и макаронным изделиям) повышает их белковую ценность. Кроме этого, на кафедре технологии пищевых продуктов Института народного хозяйства (профессор Е. Козьмина) и в Институте элементоорганических соединений АН СССР (директор академик А. Несмеянов) мы приготовили на основе этого препарата искусственные макароны. Их белковая ценность на 183 процента выше, чем у промышленных пшеничных макарон высшего сорта.

По внешнему виду, запаху и вкусу они также практически не отличались от всем нам привычного продукта.

Применяя обычные технологические линии по производству синтетических волокон, можно получать из искусственных белков длинные нити, которые после пропитки их формообразующими веществами, придания им соответствующего вкуса, цвета и запаха могут имитировать любой белковый продукт. Таким способом уже получены искусственное мясо (говядина, свинина, различные виды птиц), молоко, сыры и другие продукты. Они уже прошли широкую биологическую апробацию на животных и людях и вышли из лабораторий на прилавки магазинов США, Англии, Индии , стран Азии и Африки. Только в одной Англии их производство достигает примерно 1500 тонн в год. Интересно, что белковую часть школьных обедов в США уже разрешено на 30 процентов заменять искусственным мясом, созданным на основе соевого белка.

Используемое в питании больных Ричмондского госпиталя (США) искусственное мясо получило высокую оценку главного диетолога. Правда, когда больным давали антрекот из искусственного мяса, они жаловались на его тестоватость, хотя и не знали и даже не догадывались о том, что получали не естественный продукт. А когда мясо подавалось в виде мелко нарезанных кусочков, нареканий не было. Обслуживающий персонал также употреблял искусственное мясо, не догадываясь о подделке.

Они воспринимали его как натуральную говядину. Врачи госпиталя отмечали также положительное влияние рациона на здоровье пациентов и особенно больных атеросклерозом. В состав такого мяса обязательно включают специально обработанный искусственный белок, небольшое количество яичного альбумина, жиры, витамины, минеральные соли, природные красители, ароматизаторы и прочее, что дает возможность «лепить» изделие с заданными свойствами, учитывая при этом физиологические особенности организма, для которого продукт предназначен. Это особенно важно в диете детей и людей пожилого возраста, больных и выздоравливающих, когда необходимо лимитировать питание по целому ряду пищевых компонентов, что весьма трудно сделать, используя, традиционные продукты.

Такое мясо можно резать, замораживать, консервировать, сушить или прямо использовать для приготовления различных блюд.

Проведя исследования на взрослых людях и детях, Рикардо Брессани с соавторами пришли к выводу, что питательность искусственного мяса составляет примерно 80 процентов от питательности молока. Такое мясо охотно ели дети, и оно не оказывало на них никакого отрицательного действия.

Высоко оценена специалистами созданная в СССР (в Институте элементоорганических соединений АН СССР) искусственная черная икра, которую по внешнему виду и вкусовым качествам практически невозможно отличить от натурального продукта. Биологическая ценность ее достаточно высока, так как по химическому составу икра полностью отвечает требованиям, предъявляемым к продуктам современной наукой о питании. В настоящее время в Москве налаживается промышленное производство икры. Уже построен цех производительностью 500 кг искусственной икры в сутки.

Таким образом, сейчас уже накопилось немало теоретических и практических данных - объективных предпосылок для дальнейшего расширения и углубления этих исследований. Эксперты ООН и ВОЗ предсказывают: потребление замепителей мяса и молока к концу нашего столетия составит около 30 процентов ко всему белку. И, если рано еще говорить об искусственных отбивных, то синтетические лизин и метионин - эти важнейшие, незаменимые и часто дефицитные в питании человека и животных аминокислоты - производятся десятками тысяч тонн.

Налажено также и промышленное производство витаминов.

«Все это означает, что человечество уже вступило в век несельскохозяйственного производства пищевых веществ», - сказал советский ученый, академик И. Петрянов. В недалеком будущем за рубежом производство искусственных продуктов питания превратится в одну из ведущих отраслей промышленности.

Об этом свидетельствует тот факт, что ассортимент этих продуктов там постоянно расширяется. Например, ежегодная выручка от продажи всех заменителей, сделанных на растительной основе, в США достигает 30 миллионов долларов. Экономисты пищевой промышленности предсказывают, что общая выручка от продажи искусственных продуктов питания к 1980 году будет возрастать по крайней мере на 2 миллиарда долларов в год. Уже сейчас около 35 процентов сливок, добавляемых американцами в кофе, не натуральны. Недавно в магазинах появился «яичный» порошок, приготовленный из соевого белка. Стоят такие продукты в четыре-пять раз дешевле натуральных. Вопрос обеспечения искусственными продуктами питания населения нашей страны в ближайшей перспективе не актуален.

Структура питания наших людей будет улучшаться в основном за счет повышения продуктивности сельского хозяйства и разработки новых методов сохранения продуктов, потери которых в мире огромны и достигают половины их общего производства.

Кандидат медицинских наук Б. Суханов.

Синтетические и искусственные пищевые продукты

пищевые продукты, как правило, высокой белковой ценности, создаваемые новыми технологическими методами на основе отдельных пищевых веществ (белков или составляющих их аминокислот, углеводов, жиров, витаминов, микроэлементов и др.); по внешнему виду, вкусу и запаху обычно имитируют натуральные пищевые продукты.

Синтетические пищевые продукты (СПП) - продукты, получаемые из химически синтезированных пищевых веществ. Современная синтетическая органическая химия в принципе позволяет синтезировать любые пищевые вещества из отдельных химических элементов, однако сложность синтеза высокомолекулярных соединений, к которым относятся Биополимеры пищи, особенно белков (См. Белки) и полисахаридов (См. Полисахариды) (крахмал, клетчатка), делает производство СПП на современном этапе экономически нецелесообразным. Поэтому пока из продуктов химического синтеза в питании используются низкомолекулярные Витамины и Аминокислоты . Синтетические аминокислоты и их смеси применяются как добавки к натуральным пищевым продуктам для повышения их белковой полноценности, а также в лечебном питании (в т. ч. для внутривенного введения больным, нормальное питание которых затруднено или невозможно).

Мировой дефицит полноценного пищевого белка (содержащего все незаменимые, т. е. не синтезируемые организмом, аминокислоты), затрагивающий 3 / 4 населения земного шара, ставит перед человечеством неотложную задачу поиска богатых, доступных и дешёвых источников полноценного белка для обогащения натуральных и создания новых, т. н. искусственных, белковых продуктов. Искусственные пищевые продукты (ИПП) - продукты, богатые полноценным белком, получаемые на основе натуральных пищевых веществ путём приготовления смеси растворов или дисперсий этих веществ с пищевыми студнеобразователями и придания им определённой структуры (структурирование) и формы конкретных пищевых продуктов. Ныне для производства ИПП используются белки из двух основных источников: белки, выделяемые из нетрадиционного натурального пищевого сырья, запасы которого в мире достаточно велики, - растительного (бобы сои, арахиса, семена подсолнечника, хлопчатника, кунжута, рапса, а также жмыхи и шроты из семян этих культур, горох, клейковина пшеницы, зелёные листья и другие зелёные части растений) и животного (казеин молока, малоценные сорта рыбы, Криль и другие организмы моря); белки, синтезируемые микроорганизмами, в частности различными видами дрожжей (См. Дрожжи). Исключительная скорость синтеза белка дрожжами (см. Микробиологический синтез) и их способность расти как на пищевых (сахара, пивное сусло, жмых), так и на непищевых (углеводороды нефти) средах делают дрожжи перспективным и практически неисчерпаемым источником белка для производства ИПП заводскими методами. Однако широкое применение микробиологического сырья для производства пищевых продуктов требует создания эффективных методов получения и переработки высокоочищенных белков и тщательных медико-биологических исследований. В связи с этим белок дрожжей, выращиваемых на отходах сельского хозяйства и углеводородах нефти, используется в основном в виде дрожжей кормовых (См. Дрожжи кормовые), для подкормки с.-х. животных.

Идеи о получении СПП из отдельных химических элементов и ИПП из низших организмов высказывались ещё в конце 19 в. Д. И. Менделеев ым и одним из основателей синтетической химии П. Э. М. Бертло . Однако практическая их реализация стала возможной лишь в начале 2-й половины 20 в. в результате достижений молекулярной биологии, биохимии, физической и коллоидной химии, физики, а также технологии переработки волокнообразующих и плёнкообразующих полимеров (См. Полимеры) и развития высокоточных физико-химических методов анализа многокомпонентных смесей органических соединений (газо-жидкостная и другие виды хроматографии, спектроскопия и т. п.).

В СССР широкие исследования по проблеме белковых ИПП начались в 60-70-х гг. по инициативе академика А. Н. Несмеянова в институте элементоорганических соединений (ИНЭОС) АН СССР и развивались в трёх основных направлениях: разработка экономически целесообразных методов получения изолированных белков, а также отдельных аминокислот и их смесей из растительного, животного и микробного сырья; создание методов структурирования из белков и их комплексов с полисахаридами ИПП, имитирующих структуру и вид традиционных пищевых продуктов; исследование натуральных пищевых запахов и искусственное воссоздание их композиций.

Разработанные методы получения очищенных белков и смесей аминокислот оказались универсальными для всех видов сырья: механическое или химическое разрушение оболочки клетки и извлечение фракционным растворением и осаждением соответствующими осадителями всего белка и других клеточных компонентов (полисахаридов, нуклеиновых кислот, липидов вместе с витаминами); расщепление белков ферментативным или кислотным Гидролиз ом и получение в гидролизате смеси аминокислот, очищаемой с помощью ионообменной хроматографии, и др. Исследования по структурированию позволили получить искусственно на основе белков и их комплексов с полисахаридами все основные структурные элементы естественных пищевых продуктов (волокна, мембраны и пространственные набухающие сетки из макромолекул) и разработать способы получения многих ИПП (зернистой икры, мясоподобных продуктов, искусственных картофелепродуктов, макаронных и крупяных изделий). Так, белковая зернистая икра готовится на основе высокоценного молочного белка казеина, водный раствор которого вводят вместе со структурообразователем (например, желатиной) в охлажденное растительное масло, в результате чего образуются «икринки». Отделив от масла, икринки промывают, дубят экстрактом чая для получения эластичной оболочки, окрашивают, затем обрабатывают в растворах кислых полисахаридов для образования второй оболочки, добавляют соль, композицию веществ, обеспечивающих вкус и запах, и получают деликатесный белковый продукт, практически неотличимый от натуральной зернистой икры. Искусственное мясо, пригодное для любых видов кулинарной обработки, получают методом экструзии (продавливания через формующие устройства) и мокрого прядения белка для превращения его в волокна, которые затем собирают в жгуты, промывают, пропитывают склеивающей массой (студнеобразователем), прессуют и режут на куски. Жареный картофель, вермишель, рис, ядрицу и другие немясные продукты получают из смесей белков с натуральными пищевыми веществами и студнеобразователями (альгинатами, пектинами, крахмалом). Не уступая по органолептическим свойствам соответствующим натуральным продуктам, эти ИПП в 5-10 раз превосходят их по содержанию белка и обладают улучшенными технологическими качествами. Запахи при современной технике исследуются методами газожидкостной хроматографии и воссоздаются искусственно из тех же компонентов, что и в натуральных пищевых продуктах.

Исследования в области проблем, связанных с созданием СПП и ИПП, в СССР ведутся в ИНЭОС АН СССР совместно с институтом питания АМН СССР, Московским институтом народный хозяйства им. Г. В. Плеханова, Научно-исследовательским институтом общественного питания министерства торговли СССР, Всесоюзным научно-исследовательским и экспериментально-конструкторским институтом продовольственного машиностроения, Всесоюзным научно-исследовательским институтом морского рыбного хозяйства и океанографии и др. Разрабатываются методы заводской технологии ИПП для внедрения лабораторных образцов в промышленное производство.

За рубежом первые патенты на производство искусственного мяса и мясоподобных продуктов из изолированных белков сои, арахиса и казеина были получены в США Ансоном, Педером и Боэром в 1956-63. В последующие годы в США, Японии, Великобритании возникла новая промышленность, производящая самые разнообразные ИПП (жареное, заливное, молотое и другое мясо разных видов, мясные бульоны, котлеты, колбасы, сосиски и другие мясопродукты, хлеб, макаронные и крупяные изделия, молоко, сливки, сыры, конфеты, ягоды, напитки, мороженое и др.). В США, на долю которых приходится почти 75% мирового производства сои, выпуск ИПП на основе соевых белков достигает сотен тыс. т. В Японии и Великобритании для производства ИПП используются в основном растительные белки (в Великобритании в экспериментах начато изготовление искусственного молока и сыров из зелёных листьев растений). Осваивается промышленное производство ИПП другими странами. По зарубежным статистическим данным, к 1980-90 производство ИПП в экономически развитых странах составит 10-25% производства традиционных пищевых продуктов.

Лит.: Менделеев Д. И., Работы по сельскому хозяйству и лесоводству, М., 1954; Несмеянов А. Н. [и др.], Искусственная и синтетическая пища, «Вестник АН СССР», 1969, № 1; Питание увеличивающегося населения земного шара: рекомендации, касающиеся международных мероприятий, имеющих целью предупредить угрозу недостатка белка, Нью-Йорк, 1968 (ООН. Экономический и социальный Совет. Е 4343); Food: readings from scientific American, S. F., 1973; World protein resources. Wash., 1966.

С. В. Рогожин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Ароматизаторы вещества, которые используют для придания продуктам или изделиям определённых запахов, создания или улучшения аромата. Ароматизаторами называют специальные изделия, предназначенные для придания определенного аромата воздуху в… … Википедия

КРАСКИ - КРАСКИ, химич. вещества, обладающие свойством окрашивать другие предметы в свой или другой цвет непосредственно или с помощью другого хим. соединения протравы. Широкое применение К., надо полагать, вызывается инстинктивным стремле нием человека к … Большая медицинская энциклопедия

Биологически активные добавки (БАД) композиции натуральных или идентичных натуральным биологически активных веществ, предназначенных для непосредственного приема с пищей или введения в состав пищевых продуктов с целью обогащения рациона… … Википедия

Биологически активные добавки (БАД) композиции натуральных или идентичных натуральным биологически активных веществ, предназначенных для непосредственного приема с пищей или введения в состав пищевых продуктов с целью обогащения рациона… … Википедия

Биологически активные добавки (БАД) композиции натуральных или идентичных натуральным биологически активных веществ, предназначенных для непосредственного приема с пищей или введения в состав пищевых продуктов с целью обогащения рациона… … Википедия

Биологически активные добавки (БАД) композиции натуральных или идентичных натуральным биологически активных веществ, предназначенных для непосредственного приема с пищей или введения в состав пищевых продуктов с целью обогащения рациона… … Википедия

Биологически активные добавки (БАД) композиции натуральных или идентичных натуральным биологически активных веществ, предназначенных для непосредственного приема с пищей или введения в состав пищевых продуктов с целью обогащения рациона… … Википедия

Биологически активные добавки (БАД) композиции натуральных или идентичных натуральным биологически активных веществ, предназначенных для непосредственного приема с пищей или введения в состав пищевых продуктов с целью обогащения рациона… … Википедия

October 26th, 2017

Помню когда я учился в институте времена были достаточно "гоолдные", а стипендии хватало, чтобы 2 раз в месяц съездить домой (Белгород-Старый Оскол). Так вот, в те времена популярно было "мясо" из сои. И сейчас наверное продается, я не замечаю, а тогда активно покупали пакетики с сухой смесью, которую замачиваешь, лепишь из нее котлеты и жаришь - получаются мясные котлеты без мяса. Мне вкус нравился, прикольно так. Я не большой фанат и ценитель мяса.

Судя по динамике в ближайшие 30−50 лет, чтобы накормить голодные рты, эту цифру нужно будет увеличивать вдвое, поскольку необходимо удовлетворять аппетиты развивающихся государств, где наблюдается демографический взрыв. Когда китайцы при Мао Цзэдуне строили светлое будущее, им в среднем в год доставалось 4 килограмма мяса на человека (примерно 11 грамм в сутки). Сегодня каждый из 1 миллиарда 379 миллионов жителей Поднебесной жарит, варит и тушит в среднем уже 55 килограммов мяса в год. А ведь есть еще и население Индии, которое по численности практически настигло китайских товарищей. И все они мечтают догнать по потреблению деликатесов Америку (янки в среднем поглощают 120 кг мяса в год) или Россию (73 кило).

Однако кому-то на планете все равно придется затягивать пояса. По подсчетам ученых, если делить по-братски, то ресурсов Земли хватит только для производства 40 килограмм мяса на каждого из 7 миллиардов людей, населяющих Землю. А ведь к 2060 году население планеты вырастет на четверть — до 9,5 миллиардов!

Впрочем, для заядлых мясоедов есть и хорошая новость. Ученые научились выращивать мясо из пробирки, которое по вкусовым и питательным свойствам ничем не уступает натуральному.

Как делают искусственное мясо


Грядущий продовольственный кризис стараются предвосхитить множество разработчиков искусственного мяса.

Большинство производителей предпочитают выращивать искусственное мясо из стволовых клеток животных. Это, конечно, более гуманный способ производства белка, нежели традиционное мясное производство. Но, как минимум, одним животным придется пожертвовать. В идеале выглядит это так: корову или поросенка холят и лелеют, содержат на экологически чистых пастбищах, дают отборные корма. Это делается для того, чтобы получить элитное и чистое на клеточном уровне мясо, затем зверушку «приносят в жертву». Его стволовые клетки станут материалом для выращивания сотен тонн мышечной массы в специальных биореакторах. Клетки поместят в теплый питательный раствор, где они будут очень быстро размножаться, пока не превратятся в некое подобие комочков фарша.

Технологии разных компаний различаются только в нюансах. Например американская фирма Memphis Meats создает в биореакторах мясо утки и курицы, культивируя клетки из эмбриональной сыворотки птенцов. Израильский стартап SuperMeat сделал ставку на выращивание куриной печенки. Кстати, SuperMeat, наряду с двумя другими израильскими лабораториями, получил серьезный контракт от правительства Китая. Власти Поднебесной настолько «распробовали на вкус» разработки биохимиков, что вложили 300 миллионов в развитие израильских технологий производства искусственного мяса. Но 300 миллионов это еще цветочки.



Победители «мясной» гонки будут пилить приз в 729 миллиардов долларов — в эту сумму оценивается объем мирового рынка производства мяса. Но все создатели свиных, куриных и иных «франкенштейнов» сталкиваются с одной неаппетитной проблемой. Белковая еда, которая получается на выходе, по вкусу очень отдаленно напоминает натуральное мясо. Дело в том, что, хотя в биореакторах имитируются такие же условия, как внутри тела живого существа, культивированное мясо получается пористым и эластичным.

Решить проблему, похоже, удалось стартапу под названием Impossible Foods, который добился наибольшей аутентичности по вкусовым параметрам. Это особенно удивительно, учитывая, что свою «говядину» они создают не из клеток животных, а из растительных материалов. Но основатель компании профессор биохимии Патрик Браун рассуждал следующим образом: настоящее мясо очень сложно вырастить из клеток, потому что это очень сложная ткань. Она состоит из десятков тысяч мышечных волокон, кровеносных сосудов, нервов, прослоек жировой и соединительной тканей. Гораздо проще разложить эту сложную материю на химические элементы и потом попробовать собрать воедино из сырья растительного происхождения. В проект поверили большие люди: среди инвесторов фигурируют самый богатый человек планеты Билл Гейтс и самый состоятельный бизнесмен Азии гонконгский предприниматель Ли Кашин. Биохимики Impossible Foods потратили 5 лет и 80 миллионов долларов на то, чтобы разложить вкус говядины на молекулы. Они изучали, почему сырое мясо практически безвкусно, но стоит кинуть его на сковородку, как кухня тут же наполняется соблазнительными ароматами. Почему кусок телятины шипит на сковородке. Из-за чего меняет цвет после термической обработки. Благодаря каким веществам образуется фирменный запах.



В итоге выяснилось, что ключевым компонентом, который дает мясу вкус и текстуру, являются гемы. Эти соединения входят в состав гемоглобина. В гемах содержится атом железа, и благодаря этому кровь способна насыщаться кислородом. Особо богаты этими соединениями мышечные волокна. Это своего рода кирпичики из которых строится живой организм. Гемы содержатся не только в живых организмах, но и в растениях. Например, в сое. Правда, процентное содержание гемов в тканях растений в тысячи раз меньше, чем в тканях животных. Однако биохимики нашли достаточно дешевый способ синтезировать «секретный ингредиент» из сои. В этом растении содержится леггемоглобин — сложные белки, которые так же обладают способностью связывать кислород и имеют большое структурное сходство с гемоглобином. Ученые объясняют это общим эволюционным происхождением. Проблема заключалась в том, что для производства такого количества гема, который содержится в одном килограмме мышечной ткани, необходимо настолько много сои, что производство никак не вписывается в рамки рентабельности.

Однако Патрику Брауну и его коллегам удалось справится с этой проблемой, позаимствовав решение у пивоваров. Они использовали тот же процесс брожения, в результате которого на свет появляется божественный пенный напиток. Гены, отвечающие за производство в сое леггемоглобина, «подсадили» штамму дрожжей Pichia pastoris, которые в биотехнологиях применяют для синтеза белков. Полученную массу подкармливали питательным раствором и на выходе получили гем уже в промышленных объемах.

Кроме того, они реконструировали запах мяса, используя растительные аналоги.


— Сделать нужный запах совсем нетрудно, надо только знать, в каких пропорциях смешать химические вещества, из которых он состоит, — говорит Стейси Симонич, химик из Университета штата Орегон.

Продукты питания будущего: уже в продаже


С 2016 года искусственная говядина начала свое триумфальное шествие по заведениям американского общепита. Его можно попробовать в Нью-Йорке, Лас-Вегасе, Сан-Франциско, Лос-Анджелесе и Техасе. В начале этого года Impossible Foods открыла лабораторию по производству своей «говядины» в промышленных масштабах. Предприятие способно синтезировать 454 000 кг искусственного мяса в месяц. По словам Патрика Брауна, этого достаточно, чтобы обеспечить искусственными бургерами 1000 ресторанов. Он уверен, что от желающих попробовать диковинку не будет отбоя. Как утверждают гурманы, отличие только в том, что бургеры от Impossible Foods стоят 12 долларов — в два раза дороже обычных.

Как заставить людей, находящихся в здравом уме и твердой памяти, переплачивать за бургер вдвое? Система аргументов производителей выглядит достаточно стройно. Они апеллируют к самым светлым человеческим чувствам.


— Покупая гамбургер из синтетического белка, человек совершает благородный поступок — он помогает обществу! — считает Патрик Браун, специалист по молекулярной биологии. — Чтобы создать килограмм мяса, нам требуется в 20 раз меньше сельхозугодий и в 4 раза меньше воды. При этом в 8 раз сокращаются выбросы парниковых газов.

Как буренки портят воздух


— Казалось бы, какое отношение коровки имеют к глобальному изменению климата. Но ученые подсчитали: каждый день корова съедает примерно 15−20 килограмм травы.

— Во время переработки этой зеленой массы пищеварительная система животного ежедневно выделяет 500 литров метана.

— В целом мясная промышленность выбрасывает в атмосферу 18 процентов парниковых газов, производимых человечеством. Примерно так же загрязняет воздух и автомобильный транспорт.

На сознательность давит и другой пионер движения — голландский биохимик Марк Пост из Университета Маастрихта. Именно он в 2013 году представил публике первую в мире котлету, выращенную из стволовых клеток животного.

— Я думаю, уже через 25 лет правительства заставят производителей традиционного мяса платить экологический налог, — утверждает голландский профессор. — Примерно то же самое происходит и в автомобильной промышленности. Например, Германия объявила о запрете производства машин с двигателями внутреннего сгорания с 2030 года. Так расчищается путь более экологичным электромобилям. Считаю, нынешние дети доживут до того дня, когда будет запрещено выращивать животных на убой. Произойдет это через 50−60 лет. Но уже сейчас традиционное мясо можно продавать с надписью на упаковке: «При производстве этого продукта страдало и было убито животное».

Какие еще альтернативные способы производства еды развиваются в мире


Белок из бактерий

Этот метод придумали финские ученые из Технологического университета Лаппеенранты и Технического исследовательского центра VTT. Он основан на выращивании в биологическом реакторе специальных водородных бактерий. Это микроорганизмы, которые в качестве строительного материала для клеток используют углерод. Его полным-полно в атмосферном углекислом газе. Чтобы усваивать углерод, водородным бактериям нужен источник энергии — молекулярный водород (не случайно их назвали в честь этого химического элемента). А вот он уже на дороге не валяется. Зато он образуется в биореакторе, где вода под воздействием электричества разлагается на кислород и водород, такой любимый этими бактериями. В итоге клеточная масса начинает расти и в аппарате образуется питательный бульон. Затем раствор фильтруют, сушат и подают к столу в виде порошка белого цвета.

КСТАТИ

Сам того не подозревая, каждый человек в среднем съедает за свою жизнь 5 килограммов насекомых, подсчитал энтомолог Олег Бородин, доцент кафедры зоологии биологического факультета Белорусского государственного университета. Личинки, тля, жуки и червяки попадают в наш организм в основном вместе с фруктами и овощами.

Шитбургер не желаете?



Этой дурнопахнущей научной темой занялся японский ученый Мицуюки Икеда из лаборатории Окаяма. Ему удалось синтезировать мясо из человеческих отходов. Изначально по заказу компании, обслуживающей канализацию Токио, он изучал проблем утилизации городских отходов. В ходе исследований Икеда обнаружил в канализационном иле бактерии, которые перерабатывали экскременты в протеин. Икеда выделил из коричневой массы чистый белок, приправил красителями, вкусовыми добавками и получил из «вторичного продукта», воспетого Владимиром Войновичем, еще один вид искусственного мяса. Японцы окрестили его шитбургером. Вот его пищевая ценность: 63% белков, 25% углеводов, 3% жиров и 9% минералов.

А знали ли вы, что одно время активно разрабатывали

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Рецепты. Кондитерская. Рестораны. Мясо. Фрукты и овощи